cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213812 a(n) = smallest m for which the n-th Carmichael number A002997(n) can be written as p^2*(m+1) - p*m.

Original entry on oeis.org

1, 3, 4, 2, 2, 3, 1, 1, 2, 7, 24, 4, 4, 7, 47, 80, 9, 1, 23, 2, 46, 15, 24, 21, 24, 1, 1, 76, 8, 21, 16, 14, 6, 2, 150, 16, 8, 16, 3, 156, 36, 232, 2, 13, 10, 788, 40, 25, 2, 4, 123, 12, 44, 16, 8, 207, 226, 462, 92, 6
Offset: 1

Views

Author

Marius Coman, Jun 20 2012

Keywords

Comments

The corresponding values of p are (we write the Carmichael number in brackets): 17(561), 17(1105), 19(1729), 29(2465), 31(2821), 41(6601), 67(8911), 73(10585), 73(15841), 61(29341), 41(41041), 97(46657), 103(52633), 89(62745), 37(63973), 31(75361), 101(101101), 241(115921), 73(126217), 233(162401), 61(172081), 109(188461), 101(252601), 113(278545), 109(294409), 397(314821), 409(334153), 67(340561), 211(399001), 137(410041), 163(449065), 181(488881), 271(512461), 421(530881), 61(552721), 197(656601), 271(658801), 199(670033), 433(748657), 73(825265), 151(838201), 61(852841), 577(997633), 271(1024651), 307(1033669), 37(1050985), 163(1082809), 211(1152271), 631(1193221), 541(1461241), 113(1569457), 353(1615681), 199(1773289), 331(1857241), 461(1909001), 101(2100901), 97(2113921), 73(2433601), 163(2455921), 599(2508013).
Any Carmichael number C can be written as C = p^2*(n+1) - p*n, where p is any prime divisor of C (it can be seen that the smallest n is obtained for the biggest prime divisor).
The formula C = p^2*(n+1) - p*n is equivalent to C = p^2*m - p*(m-1) = p^2*m - p*m + p, equivalent to p^2 - p divides C - p, which is a direct consequence of Korselt’s criterion.
It can be shown from p - 1 divides C - 1 not that just p^2 - p divides C - p but even that p^2 - p divides C - p^k (if C > p^k) or p^k - C (if p^k > C) which leads to the generic formula for a Carmichael number: C = p^k + n*p^2 - n*p (if C > p^k) or C = p^k - n*p^2 + n*p (if p^k > C) for any p prime divisor of C and any k natural number.
The formulas generated giving values of k seems to be very useful in the study of Fermat pseudoprimes; also, the composite numbers C for which the equation C = p^k - n*p^2 + n*p gives, over the integers, as solutions, all their prime divisors, for a certain k, deserve further study.

Crossrefs

Cf. A002997.

Programs

  • PARI
    Car=[561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217]; \\ use more terms of A002997 as desired
    apply(C->my(f=factor(C)[,1],p=f[#f],p2=p^2); (C-p2)/(p2-p), Car) \\ Charles R Greathouse IV, Jul 05 2017