This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213819 #13 Jul 16 2012 05:06:42 %S A213819 2,9,5,24,18,8,50,42,27,11,90,80,60,36,14,147,135,110,78,45,17,224, %T A213819 210,180,140,96,54,20,324,308,273,225,170,114,63,23,450,432,392,336, %U A213819 270,200,132,72,26,605,585,540,476,399,315 %N A213819 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution. %C A213819 Principal diagonal: A213820. %C A213819 Antidiagonal sums: A153978. %C A213819 Row 1, (1,2,3,4,...)**(2,5,8,11,...): A006002. %C A213819 Row 2, (1,2,3,4,...)**(5,8,11,14,...): is it the sequence A212343?. %C A213819 Row 3, (1,2,3,4,...)**(8,11,14,17,...): (k^3 + 8*k^2 + 7*k)/2. %C A213819 For a guide to related arrays, see A212500. %H A213819 Clark Kimberling, <a href="/A213819/b213819.txt">Antidiagonals n = 1..60, flattened</a> %F A213819 T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4). %F A213819 G.f. for row n: f(x)/g(x), where f(x) = x(3*n-1 - (3*n-4)*x) and g(x) = (1-x)^4. %e A213819 Northwest corner (the array is read by falling antidiagonals): %e A213819 2....9....24....50....90....147 %e A213819 5....18...42....80....135...210 %e A213819 8....27...60....110...180...273 %e A213819 11...36...78....140...225...336 %e A213819 14...45...96....170...270...399 %e A213819 17...54...114...200...315...462 %t A213819 b[n_]:=n;c[n_]:=3n-1; %t A213819 t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] %t A213819 TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] %t A213819 Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] %t A213819 r[n_]:=Table[t[n,k],{k,1,60}] (* A213819 *) %t A213819 Table[t[n,n],{n,1,40}] (* A213820 *) %t A213819 d/2 (* A002414 *) %t A213819 s[n_]:=Sum[t[i,n+1-i],{i,1,n}] %t A213819 Table[s[n],{n,1,50}] (* A153978 *) %t A213819 s1/2 (* A001296 *) %Y A213819 Cf. A212500 %K A213819 nonn,tabl,easy %O A213819 1,1 %A A213819 _Clark Kimberling_, Jul 04 2012