cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213820 Principal diagonal of the convolution array A213819.

Original entry on oeis.org

2, 18, 60, 140, 270, 462, 728, 1080, 1530, 2090, 2772, 3588, 4550, 5670, 6960, 8432, 10098, 11970, 14060, 16380, 18942, 21758, 24840, 28200, 31850, 35802, 40068, 44660, 49590, 54870, 60512, 66528, 72930, 79730, 86940, 94572, 102638, 111150, 120120, 129560, 139482
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Every term is even: a(n) = 2*A002414(n).
a(n) is the first Zagreb index of the graph obtained by joining one vertex of a complete graph K[n] with each vertex of a second complete graph K[n]. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 07 2016

Crossrefs

Programs

  • Mathematica
    (See A213819.)
    a[n_] := 2*n^3 + n^2 - n; Array[a, 50] (* Amiram Eldar, Mar 12 2023 *)

Formula

a(n) = -n + n^2 + 2*n^3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: f(x)/g(x), where f(x) = 2*x*(1 + 5*x) and g(x) = (1-x)^4.
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=1} 1/a(n) = (4*log(2) - 1)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi - 4*log(2) + 1)/3. (End)