A213820 Principal diagonal of the convolution array A213819.
2, 18, 60, 140, 270, 462, 728, 1080, 1530, 2090, 2772, 3588, 4550, 5670, 6960, 8432, 10098, 11970, 14060, 16380, 18942, 21758, 24840, 28200, 31850, 35802, 40068, 44660, 49590, 54870, 60512, 66528, 72930, 79730, 86940, 94572, 102638, 111150, 120120, 129560, 139482
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Ivan Gutman and Kinkar C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
(See A213819.) a[n_] := 2*n^3 + n^2 - n; Array[a, 50] (* Amiram Eldar, Mar 12 2023 *)
Formula
a(n) = -n + n^2 + 2*n^3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: f(x)/g(x), where f(x) = 2*x*(1 + 5*x) and g(x) = (1-x)^4.
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=1} 1/a(n) = (4*log(2) - 1)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi - 4*log(2) + 1)/3. (End)
Comments