This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213821 #6 Jul 06 2012 09:16:00 %S A213821 2,9,4,24,16,6,50,39,23,8,90,76,54,30,10,147,130,102,69,37,12,224,204, %T A213821 170,128,84,44,14,324,301,261,210,154,99,51,16,450,424,378,318,250, %U A213821 180,114,58,18,605,576,524,455,375,290,206 %N A213821 Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = n-1+h, n>=1, h>=1, and ** = convolution. %C A213821 Principal diagonal: A033431. %C A213821 Antidiagonal sums: A176060. %C A213821 Row 1, (2,5,8,11,…)**(1,2,3,4,…): A006002. %C A213821 Row 2, (2,5,8,11,…)**(2,3,4,5,…): (k^3 + 5*k^2 + 2*k)/2. %C A213821 Row 3, (1,2,3,4,…)**(8,11,14,17,…): (k^3 + 8*k^2 + 3*k)/2. %C A213821 For a guide to related arrays, see A212500. %F A213821 T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4). %F A213821 G.f. for row n: f(x)/g(x), where f(x) = x*(2*n - (n-2)*x - (n-1)*x^2) and g(x) = (1-x)^4. %e A213821 Northwest corner (the array is read by falling antidiagonals): %e A213821 2….9….24…50….90 %e A213821 4….16…39…76…130 %e A213821 6….23…54…102…170 %e A213821 8….30…69…128…210 %e A213821 10…37…84…154…250 %e A213821 12…44…99…180…290 %t A213821 b[n_]:=3n-1;c[n_]:=n; %t A213821 t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] %t A213821 TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] %t A213821 Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] %t A213821 r[n_]:=Table[t[n,k],{k,1,60}] (* A213821 *) %t A213821 Table[t[n,n],{n,1,40}] (* A033431 *) %t A213821 s[n_]:=Sum[t[i,n+1-i],{i,1,n}] %t A213821 Table[s[n],{n,1,50}] (* A176060 *) %Y A213821 Cf. A212500 %K A213821 nonn,tabl,easy %O A213821 1,1 %A A213821 _Clark Kimberling_, Jul 04 2012