A213822 Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution.
4, 20, 10, 57, 41, 16, 124, 102, 62, 22, 230, 202, 147, 83, 28, 384, 350, 280, 192, 104, 34, 595, 555, 470, 358, 237, 125, 40, 872, 826, 726, 590, 436, 282, 146, 46, 1224, 1172, 1057, 897, 710, 514, 327, 167, 52, 1660, 1602
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 4....20....57....124...230 10...41....102...202...350 16...62....147...280...470 22...83....192...358...590 28...104...237...436...710
Links
- Clark Kimberling, Antidiagonals n = 1..80, flattened
Crossrefs
Cf. A212500.
Programs
-
Mathematica
b[n_]:=3n-1;c[n_]:=3n-1; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213822 *) Table[t[n,n],{n,1,40}] (* A213823 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] Table[s[n],{n,1,50}] (* A213824 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*((6*n-2) - (3*n-7)*x - (3*n-4)*x^2) and g(x) = (1-x)^4.
Comments