cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213833 Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.

This page as a plain text file.
%I A213833 #10 Feb 27 2018 10:27:25
%S A213833 1,7,3,24,17,5,58,48,27,7,115,102,72,37,9,201,185,146,96,47,11,322,
%T A213833 303,255,190,120,57,13,484,462,405,325,234,144,67,15,693,668,602,507,
%U A213833 395,278,168,77,17,955,927,852,742,609,465
%N A213833 Rectangular array:  (row n) = b**c, where b(h) = 3*h-2, c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.
%C A213833 Principal diagonal: A103748.
%C A213833 Antidiagonal sums: A213834.
%C A213833 Row 1, (1,3,5,7,...)**(1,3,5,7,...): A081436.
%C A213833 Row 2, (1,3,5,7,...)**(3,5,7,9,...): A144640.
%C A213833 Row 3, (1,3,5,7,...)**(5,7,9,11,...): (2*k^3 + 11*k^2 - 3*k)/2.
%C A213833 For a guide to related arrays, see A212500.
%H A213833 Clark Kimberling, <a href="/A213833/b213833.txt">Antidiagonals n = 1..12, flattened</a>
%F A213833 T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
%F A213833 G.f. for row n: f(x)/g(x), where f(x) = x*((2*n-1) + (2*n+1)*x - (4*n-6)*x^2) and g(x) = (1-x)^4.
%e A213833 Northwest corner (the array is read by falling antidiagonals):
%e A213833 1....7....24....58....115
%e A213833 3....17...48....102...185
%e A213833 5....27...72....146...255
%e A213833 7....37...96....190...325
%e A213833 9....47...120...234...395
%e A213833 11...57...144...278...465
%t A213833 b[n_]:=3n-2;c[n_]:=2n-1;
%t A213833 t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
%t A213833 TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
%t A213833 Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
%t A213833 r[n_]:=Table[t[n,k],{k,1,60}] (* A213833 *)
%t A213833 Table[t[n,n],{n,1,40}] (* A130748 *)
%t A213833 s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
%t A213833 Table[s[n],{n,1,50}] (* A213834 *)
%Y A213833 Cf. A212500.
%K A213833 nonn,tabl,easy
%O A213833 1,2
%A A213833 _Clark Kimberling_, Jul 04 2012