A213835 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 4*n-7+4*h, n>=1, h>=1, and ** = convolution.
1, 7, 5, 22, 19, 9, 50, 46, 31, 13, 95, 90, 70, 43, 17, 161, 155, 130, 94, 55, 21, 252, 245, 215, 170, 118, 67, 25, 372, 364, 329, 275, 210, 142, 79, 29, 525, 516, 476, 413, 335, 250, 166, 91, 33, 715, 705, 660, 588, 497, 395
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1....7....22....50....95 5....19...46....90....155 9....31...70....130...215 13...43...94....170...275 17...55...118...210...335 21...67...142...250...395
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened.
Programs
-
Mathematica
b[n_]:=n;c[n_]:=4n-3; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213835 *) Table[t[n,n],{n,1,40}] (* A172078 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] Table[s[n],{n,1,50}] (* A051797 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*((4*n-3) + (4*n-7)*x) and g(x) = (1-x)^4.
Comments