cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213841 Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = 4*n-7+4*h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 8, 5, 29, 24, 9, 72, 65, 40, 13, 145, 136, 101, 56, 17, 256, 245, 200, 137, 72, 21, 413, 400, 345, 264, 173, 88, 25, 624, 609, 544, 445, 328, 209, 104, 29, 897, 880, 805, 688, 545, 392, 245, 120, 33, 1240, 1221, 1136, 1001
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2012

Keywords

Comments

Principal diagonal: A213842.
Antidiagonal sums: A213843.
Row 1, (1,5,9,13,...)**(1,3,5,7,...): A100178.
Row 2, (1,5,9,13,...)**(3,5,7,9,...): (4*k^3 + 9*k^2 + 2*k)/3.
Row 3, (1,5,9,13,...)**(5,7,9,11,...): (4*k^3 + 21*k^2 + 2*k)/3.
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....8....29....72....145
5....24...65....136...245
9....40...101...200...345
13...56...137...264...445
17...72...173...328...545
21...88...209...392...645
		

Crossrefs

Cf. A212500.

Programs

  • Mathematica
    b[n_]:=2n-1;c[n_]:=4n-3;
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}] (* A213841 *)
    Table[t[n,n],{n,1,40}] (* A213842 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    Table[s[n],{n,1,50}] (* A213843 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(4*n-3 + 4*x - (4*n-7)*x^2) and g(x) = (1-x)^4.