This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213849 #10 Jul 13 2012 11:46:48 %S A213849 1,2,1,5,3,2,8,6,4,2,14,11,9,5,3,20,17,14,10,6,3,30,26,23,17,13,7,4, %T A213849 40,36,32,26,20,14,8,4,55,50,46,38,32,23,17,9,5,70,65,60,52,44,35,26, %U A213849 18,10,5,91,85,80,70,62,50,41,29,21,11,6 %N A213849 Rectangular array: (row n) = b**c, where b(h) = ceiling(h/2), c(h) = floor(n-1+h), n>=1, h>=1, and ** = convolution. %C A213849 Principal diagonal: A049778. %C A213849 Antidiagonal sums: A213850. %C A213849 Row 1, (1,1,2,2,3,3,...)**(1,1,2,2,3,3,...). %C A213849 Row 2, (1,1,2,2,3,3,...)**(1,2,2,3,3,4,...). %C A213849 Row 3, (1,1,2,2,3,3,...)**(2,2,3,3,4,4,...). %C A213849 For a guide to related arrays, see A212500. %H A213849 Clark Kimberling, <a href="/A213849/b213849.txt">Antidiagonals n = 1..60, flattened</a> %F A213849 T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4). %F A213849 G.f. for row n: f(x)/g(x), where f(x) = x*(ceiling(n/2) + m(n)*x - floor(n/2)*x^2), where m(n) = (n+1 mod 2), and g(x) = (1+x)^2 *(1-x)^4. %e A213849 Northwest corner (the array is read by falling antidiagonals): %e A213849 1...2...5....8....14...20...30...40 %e A213849 1...3...6....11...17...26...36...50 %e A213849 2...4...9....14...23...32...46...60 %e A213849 2...5...10...17...26...38...52...70 %e A213849 3...6...13...20...32...44...62...80 %t A213849 b[n_]:=Floor[(n+1)/2];c[n_]:=Floor[(n+1)/2]; %t A213849 t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] %t A213849 TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] %t A213849 Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] %t A213849 r[n_]:=Table[t[n,k],{k,1,60}] (* A213849 *) %t A213849 d=Table[t[n,n],{n,1,50}] (* A049778 *) %t A213849 s[n_]:=Sum[t[i,n+1-i],{i,1,n}] %t A213849 s1=Table[s[n],{n,1,50}] (* A213850 *) %Y A213849 Cf. A212500. %K A213849 nonn,tabl,easy %O A213849 1,2 %A A213849 _Clark Kimberling_, Jul 05 2012