This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213853 #15 Jun 13 2025 01:09:08 %S A213853 1,4,2,13,10,6,42,38,32,20,141,136,128,110,70,492,486,476,452,392,252, %T A213853 1767,1760,1748,1718,1638,1428,924,6474,6466,6452,6416,6316,6036,5280, %U A213853 3432,24051,24042,24026,23984,23864,23514,22506,19734,12870 %N A213853 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = binomial(2*n-4+2*h,n-2+h), n>=1, h>=1, and ** = convolution. %C A213853 Row 1, (1,2,3,4,5,...)**(1,2,6,20,70,...): %C A213853 Row 2, (1,2,3,4,5,...)**(2,6,20,70,252,...): %C A213853 Row 3, (1,2,3,4,5,...)**(6,20,70,252,...): %C A213853 For a guide to related arrays, see A213500. %H A213853 Clark Kimberling, <a href="/A213853/b213853.txt">Antidiagonals n = 1..60, flattened</a> %e A213853 Northwest corner (the array is read by falling antidiagonals): %e A213853 1 4 13 42 141 %e A213853 2 10 38 136 486 %e A213853 6 32 128 476 1748 %e A213853 20 110 452 1718 6416 %e A213853 70 392 1638 6316 23864 %t A213853 b[n_]:=n;c[n_]:=Binomial[2n-2,n-1] %t A213853 t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] %t A213853 TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] %t A213853 Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] %t A213853 r[n_]:=Table[t[n,k],{k,1,20}] (* A213853 *) %Y A213853 Cf. A213500. %K A213853 nonn,tabl,easy %O A213853 1,2 %A A213853 _Clark Kimberling_, Jul 05 2012