This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213879 #37 Feb 16 2025 08:33:17 %S A213879 1,111,131,141,151,161,171,181,191,1331,1441,1551,1661,1771,1881,1991, %T A213879 10301,10401,10501,10601,10701,10801,10901,11111,11211,11311,11411, %U A213879 11511,11611,11711,11811,11911,12021,12121,12321,12421,12521,12621,12721,12821 %N A213879 Positive palindromes that are not the sum of two positive palindromes. %C A213879 These numbers do not occur in A035137. %H A213879 Alois P. Heinz, <a href="/A213879/b213879.txt">Table of n, a(n) for n = 1..2151</a> (first 111 terms from N. J. A. Sloane) %H A213879 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a> %H A213879 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a> %F A213879 ({ A002113 } intersect { A319477 }) minus { 0 }. - _Alois P. Heinz_, Sep 19 2018 %e A213879 22 is not a member because 22 = 11 + 11. %p A213879 # From _N. J. A. Sloane_, Sep 09 2015: bP is a list of the palindromes %p A213879 a:={}; M:=400; for n from 3 to M do p:=bP[n]; %p A213879 # is p a sum of two palindromes? %p A213879 sw:=-1; for i from 2 to n-1 do j:=p-bP[i]; if digrev(j)=j then sw:=1; break; fi; %p A213879 od; %p A213879 if sw<0 then a:={op(a),p}; fi; od: %p A213879 b:=sort(convert(a,list)); %t A213879 lst1 = {}; lst2 = {}; r = 12821; Do[If[FromDigits@Reverse@IntegerDigits[n] == n, AppendTo[lst1, n]], {n, r}]; l = Length[lst1]; Do[s = lst1[[i]] + lst1[[j]]; AppendTo[lst2, s], {i, l - 1}, {j, i}]; Complement[lst1, lst2] %t A213879 palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t1 = Select[Range[12900], palQ[#] &]; Complement[t1, Union[Flatten[Table[i + j, {i, t1}, {j, t1}]]]] (* _Jayanta Basu_, Jun 15 2013 *) %Y A213879 Cf. A002113, A014092, A035137, A083142, A088601, A260255, A319477. %K A213879 base,nonn %O A213879 1,2 %A A213879 _Arkadiusz Wesolowski_, Jun 23 2012