cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213879 Positive palindromes that are not the sum of two positive palindromes.

This page as a plain text file.
%I A213879 #37 Feb 16 2025 08:33:17
%S A213879 1,111,131,141,151,161,171,181,191,1331,1441,1551,1661,1771,1881,1991,
%T A213879 10301,10401,10501,10601,10701,10801,10901,11111,11211,11311,11411,
%U A213879 11511,11611,11711,11811,11911,12021,12121,12321,12421,12521,12621,12721,12821
%N A213879 Positive palindromes that are not the sum of two positive palindromes.
%C A213879 These numbers do not occur in A035137.
%H A213879 Alois P. Heinz, <a href="/A213879/b213879.txt">Table of n, a(n) for n = 1..2151</a> (first 111 terms from N. J. A. Sloane)
%H A213879 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>
%H A213879 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>
%F A213879 ({ A002113 } intersect { A319477 }) minus { 0 }. - _Alois P. Heinz_, Sep 19 2018
%e A213879 22 is not a member because 22 = 11 + 11.
%p A213879 # From _N. J. A. Sloane_, Sep 09 2015: bP is a list of the palindromes
%p A213879 a:={}; M:=400; for n from 3 to M do p:=bP[n];
%p A213879 # is p a sum of two palindromes?
%p A213879 sw:=-1; for i from 2 to n-1 do j:=p-bP[i]; if digrev(j)=j then sw:=1; break; fi;
%p A213879 od;
%p A213879 if sw<0 then a:={op(a),p}; fi; od:
%p A213879 b:=sort(convert(a,list));
%t A213879 lst1 = {}; lst2 = {}; r = 12821; Do[If[FromDigits@Reverse@IntegerDigits[n] == n, AppendTo[lst1, n]], {n, r}]; l = Length[lst1]; Do[s = lst1[[i]] + lst1[[j]]; AppendTo[lst2, s], {i, l - 1}, {j, i}]; Complement[lst1, lst2]
%t A213879 palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t1 = Select[Range[12900], palQ[#] &]; Complement[t1, Union[Flatten[Table[i + j, {i, t1}, {j, t1}]]]] (* _Jayanta Basu_, Jun 15 2013 *)
%Y A213879 Cf. A002113, A014092, A035137, A083142, A088601, A260255, A319477.
%K A213879 base,nonn
%O A213879 1,2
%A A213879 _Arkadiusz Wesolowski_, Jun 23 2012