This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213883 #26 Jan 16 2025 11:52:05 %S A213883 1,1,1,1,1,1,1,1,2,1,3,2,1,1,3,5,5,3,1,3,3,1,1,9,1,1,1,1,1,7,3,6,4,1, %T A213883 4,4,1,15,10,1,7,3,1,3,2,2,4,6,1,3,5,20,1,1,1,8,10,7,15,10,1,4,2,5,8, %U A213883 3,23,11,2,2,9,3,1,5,4,1,6,3,18,2 %N A213883 Least number k such that (10^k-j)*10^n-1 is prime for some single-digit j or 0 if no such prime with 1<=k, 0<=j<=9 exists. %C A213883 j cannot be 0, 3, 6 or 9 because we are searching for repdigit primes with k-1 times the digit 9, one digit (9-j), and n least-significant digits 9 (so n+k-1 times the digit 9 in total). If j is a multiple of 3, that number is also a multiple of 3 and not prime. %C A213883 Conjecture: there is always at least one (k,j) solution for each n. %H A213883 Pierre CAMI, <a href="/A213883/b213883.txt">Table of n, a(n) for n = 1..2200</a> %e A213883 Refers to the primes 89, 599, 8999, 79999, 799999, 4999999, 89999999,... %p A213883 A213883 := proc(n) %p A213883 for k from 1 to 2*n-1 do %p A213883 for j from 0 to 9 do %p A213883 if isprime( (10^k-j)*10^n-1) then %p A213883 return k; %p A213883 end if; %p A213883 end do: %p A213883 end do: %p A213883 return 0 ; %p A213883 end proc: # _R. J. Mathar_, Jul 20 2012 %o A213883 (PFGW & SCRIPT) %o A213883 SCRIPT %o A213883 DIM nn,0 %o A213883 DIM jj %o A213883 DIM kk %o A213883 DIMS tt %o A213883 OPENFILEOUT myfile,a(n).txt %o A213883 LABEL loopn %o A213883 SET nn,nn+1 %o A213883 IF nn>2200 THEN END %o A213883 SET kk,0 %o A213883 LABEL loopk %o A213883 SET kk,kk+1 %o A213883 IF kk>2*nn THEN GOTO loopn %o A213883 SET jj,0 %o A213883 LABEL loopj %o A213883 SET jj,jj+1 %o A213883 IF jj%3==0 THEN SET jj,jj+1 %o A213883 IF jj>9 THEN GOTO loopk %o A213883 SETS tt,%d,%d,%d\,;nn;kk;jj %o A213883 PRP (10^kk-jj)*10^nn-1,tt %o A213883 IF ISPRP THEN GOTO a %o A213883 IF ISPRIME THEN GOTO a %o A213883 GOTO loopj %o A213883 LABEL a %o A213883 WRITE myfile,tt %o A213883 GOTO loopn %Y A213883 Cf. A213790, A213884 (corresponding j). %K A213883 nonn %O A213883 1,9 %A A213883 _Pierre CAMI_, Jun 26 2012