cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213887 Triangle of coefficients of representations of columns of A213743 in binomial basis.

This page as a plain text file.
%I A213887 #22 May 28 2025 04:42:30
%S A213887 1,0,1,0,1,1,0,1,2,1,0,1,3,3,1,0,0,4,6,4,1,0,0,3,10,10,5,1,0,0,2,12,
%T A213887 20,15,6,1,0,0,1,12,31,35,21,7,1,0,0,0,10,40,65,56,28,8,1,0,0,0,6,44,
%U A213887 101,120,84,36,9,1,0
%N A213887 Triangle of coefficients of representations of columns of A213743 in binomial basis.
%C A213887 This triangle is the third array in the sequence of arrays A026729, A071675 considered as triangles.
%C A213887 Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213743. For example, s_1(n)=binomial(n,1)=n is the first column of A213743 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213743 for n>1, etc. In particular (see comment in A213743), in cases k=6,7,8,9  s_k(n) is A064056(n+2), A064057(n+2), A064058(n+2), A000575(n+3) respectively.
%C A213887 Riordan array (1,x+x^2+x^3+x^4). A186332 with additional 0 column. - _Ralf Stephan_, Dec 31 2013
%e A213887 As a triangle, this begins
%e A213887 n/k.|..0....1....2....3....4....5....6....7....8....9
%e A213887 =====================================================
%e A213887 .0..|..1
%e A213887 .1..|..0....1
%e A213887 .2..|..0....1....1
%e A213887 .3..|..0....1....2....1
%e A213887 .4..|..0....1....3....3....1
%e A213887 .5..|..0....0....4....6....4....1
%e A213887 .6..|..0....0....3...10...10....5....1
%e A213887 .7..|..0....0....2...12...20...15....6....1
%e A213887 .8..|..0....0....1...12...31...35...21....7....1
%e A213887 .9..|..0....0....0...10...40...65...56...28....8....1
%p A213887 pts := 4; # A213887
%p A213887 g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
%p A213887 for n from 0 to 13 do
%p A213887     for k from 0 to n do
%p A213887         coeftayl(g,z=0,n) ;
%p A213887         coeftayl(%,t=0,k) ;
%p A213887         printf("%d ",%) ;
%p A213887     end do:
%p A213887     printf("\n") ;
%p A213887 end do: # _R. J. Mathar_, May 28 2025
%Y A213887 Cf. A026729, A071675, A030528 (parts <=2), A078803 (parts <=3), A213888 (parts <=5), A061676 and A213889 (parts <=6).
%K A213887 nonn,tabl
%O A213887 0,9
%A A213887 _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 23 2012