cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213888 Triangle of coefficients of representations of columns of A213744 in binomial basis.

This page as a plain text file.
%I A213888 #16 May 28 2025 04:44:36
%S A213888 1,0,1,0,1,1,0,1,2,1,0,1,3,3,1,0,1,4,6,4,1,0,0,5,10,10,5,1,0,0,4,15,
%T A213888 20,15,6,1,0,0,3,18,35,35,21,7,1,0,0,2,19,52,70,56,28,8,1,0,0,1,18,68,
%U A213888 121,126,84,36,9,1,0
%N A213888 Triangle of coefficients of representations of columns of A213744 in binomial basis.
%C A213888 This triangle is the fourth array in the sequence of arrays A026729, A071675, A213887,..., such that the first two arrays are considered as triangles.
%C A213888 Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213744. For example, s_1(n)=binomial(n,1)=n is the first column of A213744 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213744 for n>1, etc. In particular (see comment inA213744), in cases k=7,8,9  s_k(n) is A063262(n+2), A063263(n+2), A063264(n+2) respectively.
%e A213888 As a triangle, this begins
%e A213888 n/k.|..0....1....2....3....4....5....6....7....8....9
%e A213888 =====================================================
%e A213888 .0..|..1
%e A213888 .1..|..0....1
%e A213888 .2..|..0....1....1
%e A213888 .3..|..0....1....2....1
%e A213888 .4..|..0....1....3....3....1
%e A213888 .5..|..0....1....4....6....4....1
%e A213888 .6..|..0....0....5...10...10....5....1
%e A213888 .7..|..0....0....4...15...20...15....6....1
%e A213888 .8..|..0....0....3...18...35...35...21....7....1
%e A213888 .9..|..0....0....2...19...52...70...56...28....8....1
%p A213888 pts := 5; # A213888
%p A213888 g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
%p A213888 for n from 0 to 13 do
%p A213888     for k from 0 to n do
%p A213888         coeftayl(g,z=0,n) ;
%p A213888         coeftayl(%,t=0,k) ;
%p A213888         printf("%d ",%) ;
%p A213888     end do:
%p A213888     printf("\n") ;
%p A213888 end do: # _R. J. Mathar_, May 28 2025
%Y A213888 Cf. A026729, A071675, A213887, A030528 (parts <=2), A078803 (parts <=3), A213887 (parts <=4).
%K A213888 nonn,tabl
%O A213888 0,9
%A A213888 _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 23 2012