cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213889 Triangle of coefficients of representations of columns of A213745 in binomial basis.

This page as a plain text file.
%I A213889 #20 May 28 2025 04:49:47
%S A213889 1,0,1,0,1,1,0,1,2,1,0,1,3,3,1,0,1,4,6,4,1,0,1,5,10,10,5,1,0,0,6,15,
%T A213889 20,15,6,1,0,0,5,21,35,35,21,7,1,0,0,4,25,56,70,56,28,8,1,0,0,3,27,80,
%U A213889 126,126,84,36,9,1
%N A213889 Triangle of coefficients of representations of columns of A213745 in binomial basis.
%C A213889 This array is the fifth array in the sequence of arrays A026729, A071675, A213887, A213888,..., such that the first two arrays are considered as triangles.
%C A213889 Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213745. For example, s_1(n)=binomial(n,1)=n is the first column of A213745 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213745 for n>1, etc. In particular (see comment in A213745), in cases k=8,9  s_k(n) is A063417(n+2), A063418(n+2) respectively.
%e A213889 As a triangle, this begins
%e A213889 n/k.|..0....1....2....3....4....5....6....7....8....9
%e A213889 =====================================================
%e A213889 .0..|..1
%e A213889 .1..|..0....1
%e A213889 .2..|..0....1....1
%e A213889 .3..|..0....1....2....1
%e A213889 .4..|..0....1....3....3....1
%e A213889 .5..|..0....1....4....6....4....1
%e A213889 .6..|..0....1....5...10...10....5....1
%e A213889 .7..|..0....0....6...15...20...15....6....1
%e A213889 .8..|..0....0....5...21...35...35...21....7....1
%e A213889 .9..|..0....0....4...25...56...70...56...28....8....1
%p A213889 pts := 6; # A213889 and A061676
%p A213889 g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
%p A213889 for n from 0 to 13 do
%p A213889     for k from 0 to n do
%p A213889         coeftayl(g,z=0,n) ;
%p A213889         coeftayl(%,t=0,k) ;
%p A213889         printf("%d ",%) ;
%p A213889     end do:
%p A213889     printf("\n") ;
%p A213889 end do: # _R. J. Mathar_, May 28 2025
%Y A213889 Cf. A026729, A071675, A078803 (parts <=3), A213887 (parts <=4), A213888 (parts <=5).
%Y A213889 Essentially the same as A061676.
%K A213889 nonn,tabl
%O A213889 0,9
%A A213889 _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 23 2012