This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213920 #22 Jun 04 2019 04:43:26 %S A213920 0,1,1,2,3,7,15,34,79,190,457,1132,2823,7126,18136,46541,120103, %T A213920 312109,815012,2137755,5632399,14895684,39519502,105198371,280815067, %U A213920 751490363,2016142768,5420945437,14604580683,39425557103,106618273626,288792927325,783516425820 %N A213920 Number of rooted trees with n nodes such that no more than two subtrees corresponding to children of any node have the same number of nodes. %C A213920 Coincides with A248869 up to a(9) = 190. %C A213920 a(n+1)/a(n) tends to 2.845331... - _Vaclav Kotesovec_, Jun 04 2019 %H A213920 Alois P. Heinz, <a href="/A213920/b213920.txt">Table of n, a(n) for n = 0..2213</a> %e A213920 : o : o : o o : o o o : %e A213920 : : | : / \ | : | / \ | : %e A213920 : : o : o o o : o o o o : %e A213920 : : : | : / \ | | : %e A213920 : : : o : o o o o : %e A213920 : : : : | : %e A213920 : n=1 : n=2 : n=3 : n=4 o : %e A213920 :.....:.....:...........:.................: %e A213920 : o o o o o o o : %e A213920 : | | / \ / \ / \ /|\ | : %e A213920 : o o o o o o o o o o o o : %e A213920 : | / \ / \ | | | | | : %e A213920 : o o o o o o o o o o : %e A213920 : / \ | | | : %e A213920 : o o o o o : %e A213920 : | : %e A213920 : n=5 o : %e A213920 :.........................................: %p A213920 g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( %p A213920 binomial(g((i-1)$2)+j-1, j)*g(n-i*j, i-1), j=0..min(2, n/i)))) %p A213920 end: %p A213920 a:= n-> g((n-1)$2): %p A213920 seq(a(n), n=0..40); %t A213920 g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-1, i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, Min[2, n/i]}]]]; a[n_] := g[n-1, n-1]; Table[ a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 21 2017, translated from Maple *) %Y A213920 Cf. A000081, A032305, A248869. %Y A213920 Column k=2 of A318753. %K A213920 nonn %O A213920 0,4 %A A213920 _Alois P. Heinz_, Mar 05 2013