This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213921 #24 Feb 16 2025 08:33:17 %S A213921 1,2,3,5,4,7,10,8,9,13,17,14,6,16,21,26,22,11,12,25,31,37,32,18,15,20, %T A213921 36,43,50,44,27,23,24,30,49,57,65,58,38,33,19,35,42,64,73,82,74,51,45, %U A213921 28,29,48,56,81,91,101,92,66,59,39,34,41,63,72,100,111 %N A213921 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals. %C A213921 A permutation of the natural numbers. %C A213921 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. %C A213921 Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Enumeration table T(n,k) is layer by layer. The order of the list: %C A213921 T(1,1)=1; %C A213921 T(1,2), T(2,1), T(2,2); %C A213921 . . . %C A213921 T(1,n), T(3,n), ... T(n,3), T(n,1), T(2,n), T(4,n), ... T(n,4), T(n,2); %C A213921 ... %H A213921 Boris Putievskiy, <a href="/A213921/b213921.txt">Rows n = 1..140 of triangle, flattened</a> %H A213921 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %H A213921 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/PairingFunction.html">MathWorld: Pairing functions</a> %H A213921 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A213921 As a table: %F A213921 T(n,k) = n*n - (k mod 2)*n + 2 - floor((k+2)/2), if n>k; %F A213921 T(n,k) = k*k - ((n mod 2)+1)*k + floor((n+3)/2), if n<=k. %F A213921 As a linear sequence: %F A213921 a(n) = i*i - (j mod 2)*i + 2 - floor((j+2)/2), if i>j; %F A213921 a(n) = j*j - ((i mod 2)+1)*j + floor((i+3)/2), if i<=j; where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2). %e A213921 The start of the sequence as table: %e A213921 1 2 5 10 17 26 ... %e A213921 3 4 8 14 22 32 ... %e A213921 7 9 6 11 18 27 ... %e A213921 13 16 12 15 23 33 ... %e A213921 21 25 20 24 19 28 ... %e A213921 31 36 30 35 29 34 ... %e A213921 ... %e A213921 The start of the sequence as triangle array read by rows: %e A213921 1; %e A213921 2, 3; %e A213921 5, 4, 7; %e A213921 10, 8, 9, 13; %e A213921 17, 14, 6, 16, 21; %e A213921 26, 22, 11, 12, 25, 31; %e A213921 ... %o A213921 (Python) %o A213921 t=int((math.sqrt(8*n-7) - 1)/ 2) %o A213921 i=n-t*(t+1)/2 %o A213921 j=(t*t+3*t+4)/2-n %o A213921 if i > j: %o A213921 result=i*i-(j%2)*i+2-int((j+2)/2) %o A213921 else: %o A213921 result=j*j-((i%2)+1)*j + int((i+3)/2) %Y A213921 Cf. A060734, A060736; table T(n,k) contains: in rows A002522, A014206, A059100, A027688, A117950, A027689, A087475, A027690, A117951, A027691, A114949, A027692, A117619; in columns A002061, A000290, A002378, A005563, A028387, A008865, A028552, A028872, A014209, A028347, A028875. %K A213921 nonn,tabl %O A213921 1,2 %A A213921 _Boris Putievskiy_, Mar 05 2013