This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213925 #27 May 02 2025 03:31:17 %S A213925 1,2,3,4,5,2,3,7,2,4,9,2,5,11,3,4,13,2,7,3,5,16,17,2,9,19,4,5,3,7,2, %T A213925 11,23,2,3,4,25,2,13,3,9,4,7,29,2,3,5,31,2,16,3,11,2,17,5,7,4,9,37,2, %U A213925 19,3,13,2,4,5,41,2,3,7,43,4,11,5,9,2,23,47,3,16,49,2,25 %N A213925 Triangle read by rows: n-th row contains Fermi-Dirac representation of n. %C A213925 Unique factorization of n into distinct prime powers of form p^(2^k), cf. A050376. %H A213925 Alois P. Heinz, <a href="/A213925/b213925.txt">Rows n = 1..8000, flattened</a> (first 1000 rows from Reinhard Zumkeller) %H A213925 OEIS Wiki, <a href="/wiki/%22Fermi-Dirac_representation%22_of_n">"Fermi-Dirac representation" of n</a>. %F A213925 Product_{k=1..A064547(n)} T(n,k) = n. %e A213925 First rows: %e A213925 . 1: 1 %e A213925 . 2: 2 %e A213925 . 3: 3 %e A213925 . 4: 4 %e A213925 . 5: 5 %e A213925 . 6: 2 3 %e A213925 . 7: 7 %e A213925 . 8: 2 4 8 = 2^2^0 * 2^2^1 %e A213925 . 9: 9 %e A213925 . 10: 2 5 %e A213925 ....... %e A213925 . 990: 2 5 9 11 %e A213925 . 991: 991 %e A213925 . 992: 2 16 31 992 = 2^2^0 * 2^2^2 * 31^2^0 %e A213925 . 993: 3 331 %e A213925 . 994: 2 7 71 %e A213925 . 995: 5 199 %e A213925 . 996: 3 4 83 %e A213925 . 997: 997 %e A213925 . 998: 2 499 %e A213925 . 999: 3 9 37 999 = 3^2^0 * 3^2^1 * 37^2^0 %e A213925 . 1000: 2 4 5 25 1000 = 2^2^0 * 2^2^1 * 5^2^0 * 5^2^1 . %p A213925 T:= n-> `if`(n=1, [1], sort([seq((l-> seq(`if`(l[j]=1, i[1]^(2^(j-1)), [][]), %p A213925 j=1..nops(l)))(convert(i[2], base, 2)), i=ifactors(n)[2])]))[]: %p A213925 seq(T(n), n=1..60); # _Alois P. Heinz_, Feb 20 2018 %t A213925 nmax = 50; FDPrimes = Reap[k = 1; While[lim = nmax^(1/k); lim > 2, Sow[Prime[Range[PrimePi[lim]]]^k]; k = 2 k]][[2, 1]] // Flatten // Union; %t A213925 f[1] = 1; f[n_] := Reap[m = n; Do[If[m == 1, Break[], If[Divisible[m, p], m = m/p; Sow[p]]], {p, Reverse[FDPrimes]}]][[2, 1]] // Reverse; %t A213925 Array[f, nmax] // Flatten (* _Jean-François Alcover_, Feb 05 2019 *) %o A213925 (Haskell) %o A213925 a213925 n k = a213925_row n !! (k-1) %o A213925 a213925_row 1 = [1] %o A213925 a213925_row n = reverse $ fd n (reverse $ takeWhile (<= n) a050376_list) %o A213925 where fd 1 _ = [] %o A213925 fd x (q:qs) = if m == 0 then q : fd x' qs else fd x qs %o A213925 where (x',m) = divMod x q %o A213925 a213925_tabf = map a213925_row [1..] %o A213925 (PARI) row(n) = if(n == 1, [1], my(f = factor(n), p = f[, 1], e = f[, 2], r = [], b); for(i = 1, #p, b = binary(e[i]); for(j = 0, #b-1, if(b[#b-j], r = concat(r, p[i]^(2^j))))); r); \\ _Amiram Eldar_, May 02 2025 %Y A213925 Cf. A050376. %Y A213925 For n > 1: A064547 (row lengths), A181894 (row sums), A223490, A223491. %K A213925 nonn,tabf %O A213925 1,2 %A A213925 _Reinhard Zumkeller_, Mar 20 2013 %E A213925 Example corrected (row 992) by _Reinhard Zumkeller_, Mar 11 2015