A213935 Triangle with entry a(n,m) giving the total number of necklaces of n beads (C_n symmetry) with n colors available for each bead, but only m distinct colors present, with m from {1, 2, ..., n} and n >= 1.
1, 2, 1, 3, 6, 2, 4, 24, 36, 6, 5, 60, 300, 240, 24, 6, 180, 1820, 3900, 1800, 120, 7, 378, 9030, 42000, 50400, 15120, 720, 8, 952, 40824, 357420, 882000, 670320, 141120, 5040, 9, 2088, 169512, 2610720, 11677680, 17781120, 9313920, 1451520, 40320, 10, 4770, 673560, 17193960, 128598624, 345144240, 355622400, 136080000, 16329600, 362880
Offset: 1
Examples
n\m 1 2 3 4 5 8 7 8 ... 1 1 2 2 1 3 3 6 2 4 4 24 36 6 5 5 60 300 240 24 6 6 180 1820 3900 1800 120 7 7 378 9030 42000 50400 15120 72 8 8 952 40824 357420 882000 670320 141120 5040 ... Row n=9: 9 2088 169512 2610720 11677680 17781120 9313920 1451520 40320. Row n=10: 10 4770 673560 17193960 128598624 345144240 355622400 136080000 16329600 362880. a(2,2)=1 from the color monomial c[1]^1*c[2]^1= c[1]*c[2] (from the m=2 partition [1,1] of n=2). The necklace in question is cyclic(12) (we use j for color c[j] in these examples). a(5,3) = 120 + 180 = 300, from A212360(5,4) + A212360(5,5), because k(5,3,1)=4 and p(5,3)=2. a(3,1) = 3 from the color monomials c[1]^3, c[2]^3 and c[3]^1. The three necklaces are cyclic(111), cyclic(222) and cyclic(333). In general a(n,1)=n from the partition [n] providing the color signature (exponent), and the n color choices. a(3,2) = 6 from the color signature c[.]^2 c[.]^1, (from the m=2 partition [2,1] of n=3), and there are 6 choices for the color indices. The 6 necklaces are cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332). a(3,3) = 2. The color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). All three available colors are used. There are two non-equivalent necklaces: cyclic(1,2,3) and cyclic(1,3,2). a(4,2) = 24 from two color signatures c[.]^3 c[.] and c[.]^2 c[.]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one produces 4*3=12 necklaces, namely 1112, 1113, 1114, 2221, 2223, 2224, 3331, 3332, 3334, 4441, 4442 and 4443 all taken cyclically. The second color signature leads to another 2*6=12 necklaces: 1122, 1133, 1144, 2233, 2244, 3344, 1212, 1313, 1414, 2323, 2424 and 3434, all taken cyclically. Together they provide the 24 necklaces counted by a(4,2).
Comments