A213936 Number triangle with entry a(n,k), n>=1, m=1, 2, ..., n, giving the number of representative necklaces with n beads (C_n symmetry) corresponding to the color multinomial c[1]^k*c[2]*...*c[n+1-k].
1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 12, 4, 1, 1, 120, 60, 20, 5, 1, 1, 720, 360, 120, 30, 6, 1, 1, 5040, 2520, 840, 210, 42, 7, 1, 1, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 1, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 1
Offset: 1
Examples
n\k 1 2 3 4 5 6 7 8 9 10 ... 1 1 2 1 1 3 2 1 1 4 6 3 1 1 5 24 12 4 1 1 6 120 60 20 5 1 1 7 720 360 120 30 6 1 1 8 5040 2520 840 210 42 7 1 1 9 40320 20160 6720 1680 336 56 8 1 1 10 362880 181440 60480 15120 3024 504 72 9 1 1 ... a(4,3) = 1 because the partition is [3,1], the color signature (exponentiation) c[.]^3 c[.]^1, and the one representative necklace (we use j for color c[j] here) is: cyclic(1112). a(4,2) = 3 because the partition is [2,1^2], the color signature c[.]^2 c[.] c[.], and the three representative necklaces are: cyclic(1123), cyclic(1132) and cyclic(1213). a(5,3) = 4 because the color signature is c[.]^3 c[.] c[.] (from the partition [3,1^2]). and the four representative necklaces are 11123, 11132, 11213 and 11312, all taken cyclically.
Comments