A213945 Triangle by rows, generated from aerated sequences of 1's.
1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 11, 1, 1, 1, 1, 4, 24, 1, 1, 1, 1, 2, 7, 51, 1, 1, 1, 1, 1, 4, 12, 107, 1, 1, 1, 1, 1, 2, 6, 21, 222, 1, 1, 1, 1, 1, 1, 4, 9, 36, 457, 1, 1, 1, 1, 1, 1, 2, 6, 14, 61, 935, 1, 1, 1, 1, 1, 1, 1, 4, 8, 22, 103, 1904, 1, 1, 1, 1, 1, 1, 1, 2, 6, 11, 34, 173, 3863
Offset: 0
Examples
First few rows of the array are: 1, 2, 4, 8, 16, 32, 64, 128, 256,... 1, 1, 2, 3,..5,..8,.13,..21,..34,... 1, 1, 1, 2,..3,..4,..6,...9,..13,... 1, 1, 1, 1, 2,..3,..4,...5,...7,... ... Then, take finite differences from the top -> down, getting the triangle: 1; 1, 1; 1, 1, 2; 1, 1, 1, 5; 1, 1, 1, 2, 11; 1, 1, 1, 1, 4, 24; 1, 1, 1, 1, 2, 7, 51; 1, 1, 1, 1, 1, 4, 12, 107; 1, 1, 1, 1, 1, 2, 6, 21, 222; 1, 1, 1, 1, 1, 1, 4, 9, 36, 457; ...
Crossrefs
Cf. A027934.
Formula
Form an array in which rows are INVERT transforms of sequences of 1's starting (1,1,1,...) with row 0; then the INVERT transforms of 1's aerated with one zero (row 1); with two zeros, (row 2); three zeros, (row 3); and so on.
Comments