This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213947 #13 Feb 08 2022 22:18:19 %S A213947 1,1,2,1,4,3,1,10,6,4,1,20,21,8,5,1,42,57,28,10,6,1,84,150,88,35,12,7, %T A213947 1,170,390,252,110,42,14,8,1,340,990,712,335,132,49,16,9,1,682,2475, %U A213947 1992,975,402,154,56,18,10 %N A213947 Triangle read by rows: columns are finite differences of the INVERT transform of (1, 2, 3, ...) terms. %C A213947 Create an array in which the n-th row is the output of the INVERT transform on the first n natural numbers followed by zeros: %C A213947 1, 1, 1, 1, 1, 1, 1, ... %C A213947 1, 3, 5, 11, 21, 43, 85, ... (A001045) %C A213947 1, 3, 8, 17, 42, 100, 235, ... (A101822) %C A213947 1, 3, 8, 21, 50, 128, 323, ... %C A213947 ... %C A213947 For example, row 3 is the INVERT transform of (1, 2, 3, 0, 0, 0, ...). Then, take finite differences of column terms starting from the top; which become the rows of the triangle. %e A213947 First few rows of the triangle: %e A213947 1; %e A213947 1, 2; %e A213947 1, 4, 3; %e A213947 1, 10, 6, 4; %e A213947 1, 20, 21, 8, 5; %e A213947 1, 42, 57, 28, 10, 6; %e A213947 1, 84, 150, 88, 35, 12, 7; %e A213947 1, 170, 390, 252, 110, 42, 14, 8; %e A213947 1, 340, 990, 712, 335, 132, 49, 16, 9; %e A213947 1, 682, 2475, 1992, 975, 402, 154, 56, 18, 10; %e A213947 1, 1364, 6138, 5464, 2805, 1200, 469, 176, 63, 20, 11; %e A213947 ... %p A213947 read("transforms") ; %p A213947 A213947i := proc(n,k) %p A213947 L := [seq(i,i=1..n),seq(0,i=0..k)] ; %p A213947 INVERT(L) ; %p A213947 op(k,%) ; %p A213947 end proc: %p A213947 A213947 := proc(n,k) %p A213947 if k = 1 then %p A213947 1; %p A213947 else %p A213947 A213947i(k,n)-A213947i(k-1,n) ; %p A213947 end if; %p A213947 end proc: # _R. J. Mathar_, Jun 30 2012 %Y A213947 Cf. A001906 (row sums), A026644 (2nd column). %K A213947 nonn,tabl %O A213947 1,3 %A A213947 _Gary W. Adamson_, Jun 25 2012