cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213948 Triangle, by rows, generated from the INVERT transforms of (1, 1, 2, 4, 8, 16, ...).

This page as a plain text file.
%I A213948 #15 Dec 11 2019 07:29:54
%S A213948 1,1,1,1,2,2,1,4,4,4,1,7,10,8,8,1,12,24,20,16,16,1,20,52,56,40,32,32,
%T A213948 1,33,112,144,112,80,64,64,1,54,238,344,320,224,160,128,128,1,88,496,
%U A213948 828,848,640,448,320,256,256
%N A213948 Triangle, by rows, generated from the INVERT transforms of (1, 1, 2, 4, 8, 16, ...).
%C A213948 Row sums = A001519, the odd-indexed Fibonacci terms. The triangle is a companion to A213947, having row sums of the even-indexed Fibonacci terms.
%F A213948 Create an array in which the n-th row is the INVERT transform of the first n terms in the sequence (1, 1, 2, 4, 8, 16, 32, ...):
%F A213948   1,    1,    1,    1,    1,    1,
%F A213948   1,    2,    3,    5,    8,   13,    (essentially A000045)
%F A213948   1,    2,    5,    9,   18,   37,    (essentially A077947)
%F A213948   1,    2,    5,   13,   26,   57,
%F A213948 Terms of the n-th row of the triangle are the finite differences downwards the n-th column of this array.
%e A213948 First few rows of the triangle are:
%e A213948   1;
%e A213948   1,   1;
%e A213948   1,   2,   2;
%e A213948   1,   4,   4,   4;
%e A213948   1,   7,  20,   8,   8;
%e A213948   1,  12,  24,  20,  16,  16;
%e A213948   1,  20,  52,  56,  40,  32,  32;
%e A213948   1,  33, 112, 144, 112,  80,  64,  64;
%e A213948   1,  54, 238, 344, 320, 224, 160, 128, 128;
%e A213948   1,  88, 496, 828, 848, 640, 448, 320, 256, 256;
%e A213948   ...
%p A213948 read("transforms") ;
%p A213948 A213948i := proc(n,k)
%p A213948     if n = 1 then
%p A213948         L := [1,seq(0,i=0..k)] ;
%p A213948     else
%p A213948         L := [1,seq(2^i,i=0..n-2),seq(0,i=0..k)] ;
%p A213948     end if;
%p A213948     INVERT(L) ;
%p A213948     op(k,%) ;
%p A213948 end proc:
%p A213948 A213948 := proc(n,k)
%p A213948     if k = 1 then
%p A213948         1;
%p A213948     else
%p A213948         A213948i(k,n)-A213948i(k-1,n) ;
%p A213948     end if;
%p A213948 end proc: # _R. J. Mathar_, Jun 30 2012
%Y A213948 Cf. A001519, A213947, A000071 (2nd column), A020714 (subdiagonal), A005009 (subdiagonal).
%K A213948 nonn,tabl
%O A213948 1,5
%A A213948 _Gary W. Adamson_, Jun 25 2012