This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213948 #15 Dec 11 2019 07:29:54 %S A213948 1,1,1,1,2,2,1,4,4,4,1,7,10,8,8,1,12,24,20,16,16,1,20,52,56,40,32,32, %T A213948 1,33,112,144,112,80,64,64,1,54,238,344,320,224,160,128,128,1,88,496, %U A213948 828,848,640,448,320,256,256 %N A213948 Triangle, by rows, generated from the INVERT transforms of (1, 1, 2, 4, 8, 16, ...). %C A213948 Row sums = A001519, the odd-indexed Fibonacci terms. The triangle is a companion to A213947, having row sums of the even-indexed Fibonacci terms. %F A213948 Create an array in which the n-th row is the INVERT transform of the first n terms in the sequence (1, 1, 2, 4, 8, 16, 32, ...): %F A213948 1, 1, 1, 1, 1, 1, %F A213948 1, 2, 3, 5, 8, 13, (essentially A000045) %F A213948 1, 2, 5, 9, 18, 37, (essentially A077947) %F A213948 1, 2, 5, 13, 26, 57, %F A213948 Terms of the n-th row of the triangle are the finite differences downwards the n-th column of this array. %e A213948 First few rows of the triangle are: %e A213948 1; %e A213948 1, 1; %e A213948 1, 2, 2; %e A213948 1, 4, 4, 4; %e A213948 1, 7, 20, 8, 8; %e A213948 1, 12, 24, 20, 16, 16; %e A213948 1, 20, 52, 56, 40, 32, 32; %e A213948 1, 33, 112, 144, 112, 80, 64, 64; %e A213948 1, 54, 238, 344, 320, 224, 160, 128, 128; %e A213948 1, 88, 496, 828, 848, 640, 448, 320, 256, 256; %e A213948 ... %p A213948 read("transforms") ; %p A213948 A213948i := proc(n,k) %p A213948 if n = 1 then %p A213948 L := [1,seq(0,i=0..k)] ; %p A213948 else %p A213948 L := [1,seq(2^i,i=0..n-2),seq(0,i=0..k)] ; %p A213948 end if; %p A213948 INVERT(L) ; %p A213948 op(k,%) ; %p A213948 end proc: %p A213948 A213948 := proc(n,k) %p A213948 if k = 1 then %p A213948 1; %p A213948 else %p A213948 A213948i(k,n)-A213948i(k-1,n) ; %p A213948 end if; %p A213948 end proc: # _R. J. Mathar_, Jun 30 2012 %Y A213948 Cf. A001519, A213947, A000071 (2nd column), A020714 (subdiagonal), A005009 (subdiagonal). %K A213948 nonn,tabl %O A213948 1,5 %A A213948 _Gary W. Adamson_, Jun 25 2012