A213952 Consider the partitions of n in reverse lexicographic ordering (A080577), a(n) is the position of the partition of n which has the maximum LCM. See A000793.
1, 1, 1, 1, 3, 1, 5, 5, 8, 15, 13, 33, 49, 35, 49, 73, 107, 143, 211, 293, 398, 505, 510, 685, 710, 948, 740, 994, 2033, 1735, 2266, 1780, 2333, 4653, 5923, 7311, 9213, 7683, 9719, 17878, 14703, 19072, 22814, 28266, 34878, 42876, 52390
Offset: 1
Keywords
Examples
a(5) = 3 because of the seven partitions of 5, {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}; the LCMs of each are: {5, 4, 6, 3, 2, 2, 1}. The third one is the maximum.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..84
Programs
-
Mathematica
f[n_] := Block[{lst = Apply[LCM, IntegerPartitions@ n, 1]}, Flatten[ Position[ lst, Max@ lst, 1, 1], 1][[1]]]; Array[f, 47]
Comments