A213953 Triangle by rows, inverse of A208891.
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 1, -2, 5, 0, -3, -1, 1, -9, 5, 10, -2, -4, -1, 1, -9, -21, 25, 15, -5, -5, -1, 1, 50, -105, -11, 62, 19, -9, -6, -1, 1, 267, -141, -301, 56, 119, 21, -14, -7, -1, 1, 413, 777
Offset: 0
Examples
Triangle starts: 1; -1, 1 0, -1, 1 1, -1, -1, 1; 1, 1, -2, -1, 1; -2, 5, 0, -3, -1, 1; -9, 5, 10, -2, -4, -1, 1; -9, -21, 25, 15, -5, -5, -1, 1; 50, -105, -11, 62, 19, -9, -6, -1, 1; 267, -141, -301, 56, 119, 21, -14, -7, -1, 1; 413, 777, -1040, -566, 226, 198, 20, -20, -8, -1, 1; ...
Programs
-
Maple
A208891 := proc(n,k) if n <0 or k<0 or k>n then 0; elif n = k then 1 ; else binomial(n-1,k) ; end if; end proc: A259456 := proc(n) local A, row, col ; A := Matrix(n, n) ; for row from 1 to n do for col from 1 to n do A[row, col] := A208891(row-1,col-1) ; end do: end do: LinearAlgebra[MatrixInverse](A) ; end proc: A259456(20) ; # R. J. Mathar, Jul 21 2015
Formula
Inverse of triangle A208891, Pascal's triangle matrix with an appended right border of 1's.