This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213954 #20 Oct 16 2018 11:24:01 %S A213954 3,4,8,6,6,8,17,14,12,10,36,32,25,18,20,12,77,68,51,36,38,20,164,142, %T A213954 106,72,72,38,64,28,347,298,225,146,142,74,109,46,732,628,476,302,294, %U A213954 148,197,82,168,64,1543,1324,1003,632,614,304,385,156,277,100,3252,2790,2112,1328,1284,634,777,312,504,174,414,136 %N A213954 Irregular array T(n,k) of the numbers of non-extendable (complete) non-self-adjacent simple paths starting at each of a minimal subset of nodes within a square lattice bounded by rectangles with nodal dimensions n and 3, n >= 2. %C A213954 The subset of nodes approximately defines the top left-hand quarter of the rectangle and has nodal dimensions floor((n+1)/2) and 2 to capture all geometrically distinct counts. %C A213954 The quarter-rectangle is read by rows. %C A213954 The irregular array of numbers is: %C A213954 ....k.....1....2....3....4....5....6....7....8....9...10...11...12 %C A213954 ..n %C A213954 ..2.......3....4 %C A213954 ..3.......8....6....6....8 %C A213954 ..4......17...14...12...10 %C A213954 ..5......36...32...25...18...20...12 %C A213954 ..6......77...68...51...36...38...20 %C A213954 ..7.....164..142..106...72...72...38...64...28 %C A213954 ..8.....347..298..225..146..142...74..109...46 %C A213954 ..9.....732..628..476..302..294..148..197...82..168...64 %C A213954 .10....1543.1324.1003..632..614..304..385..156..277..100 %C A213954 .11....3252.2790.2112.1328.1284..634..777..312..504..174..414..136 %C A213954 where k indicates the position of the start node in the quarter-rectangle. %C A213954 For each n, the maximum value of k is 2*floor((n+1)/2). %C A213954 Reading this array by rows gives the sequence. %H A213954 C. H. Gribble, <a href="/wiki/Complete_non-self-adjacent_paths:Results_for_Square_Lattice">Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.</a> %H A213954 C. H. Gribble, <a href="/wiki/Complete non-self-adjacent paths:Program">Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.</a> %F A213954 It appears that: %F A213954 T(n,1) - 2*T(n-1,1) - T(n-4,1) - 2 = 0, n >= 6 %F A213954 T(n,2) - 2*T(n-1,2) - T(n-4,1) = 0, n >= 6 %F A213954 T(n,3) - 2*T(n-1,3) - T(n-4,1) = 0, n >= 10 %F A213954 T(n,4) - 2*T(n-1,4) - T(n-4,1) + 8 = 0, n >= 7 %e A213954 When n = 2, the number of times (NT) each node in the rectangle is the start node (SN) of a complete non-self-adjacent simple path is %e A213954 SN 0 1 2 %e A213954 3 4 5 %e A213954 NT 3 4 3 %e A213954 3 4 3 %e A213954 To limit duplication, only the top left-hand corner 3 and the 4 to its right are stored in the sequence, i.e. T(2,1) = 3 and T(2,2) = 4. %Y A213954 Cf. A213106, A213249, A213089, A213478. %K A213954 nonn,tabf %O A213954 2,1 %A A213954 _Christopher Hunt Gribble_, Jun 30 2012