This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213998 #21 Nov 10 2021 07:33:30 %S A213998 1,1,1,1,3,1,1,5,11,1,1,7,13,25,1,1,9,47,77,137,1,1,11,37,57,87,49,1, %T A213998 1,13,107,319,459,223,363,1,1,15,73,533,743,341,481,761,1,1,17,191, %U A213998 275,1879,2509,3349,4609,7129,1,1,19,121,1207,1627,2131,2761,3601,4861,7381,1 %N A213998 Numerators of the triangle of fractions read by rows: pf(n,0) = 1, pf(n,n) = 1/(n+1) and pf(n+1,k) = pf(n,k) + pf(n,k-1) with 0 < k < n. %C A213998 T(n,0) = 1; %C A213998 T(n,1) = A005408(n-1) for n > 0; %C A213998 T(n,2) = A188386(n-2) for n > 2; %C A213998 T(n,n-3) = A124837(n-2) for n > 2; %C A213998 T(n,n-2) = A027612(n-1) for n > 1; %C A213998 T(n,n-1) = A001008(n) for n > 0; %C A213998 T(n,n) = 1; %C A213998 A214075(n,k) = floor(T(n,k) / A213999(n,k)). %H A213998 Reinhard Zumkeller, <a href="/A213998/b213998.txt">Rows n = 0..150 of triangle, flattened</a> %H A213998 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %e A213998 Start of triangle pf with corresponding triangles of numerators and denominators: %e A213998 . 0: 1 %e A213998 . 1: 1 1/2 %e A213998 . 2: 1 3/2 1/3 %e A213998 . 3: 1 5/2 11/6 1/4 %e A213998 . 4: 1 7/2 13/3 25/12 1/5 %e A213998 . 5: 1 9/2 47/6 77/12 137/60 1/6 %e A213998 . 6: 1 11/2 37/3 57/4 87/10 49/20 1/7 %e A213998 . 7: 1 13/2 107/6 319/12 459/20 223/20 363/140 1/8 %e A213998 . 8: 1 15/2 73/3 533/12 743/15 341/10 481/35 761/280 1/9, %e A213998 . %e A213998 . 0: numerators 1 1 denominators %e A213998 . 1: 1 1 1 2 A213999 %e A213998 . 2: 1 3 1 1 2 3 %e A213998 . 3: 1 5 11 1 1 2 6 4 %e A213998 . 4: 1 7 13 25 1 1 2 3 12 5 %e A213998 . 5: 1 9 47 77 137 1 1 2 6 12 60 6 %e A213998 . 6: 1 11 37 57 87 49 1 1 2 3 4 10 20 7 %e A213998 . 7: 1 13 107 319 459 223 363 1 1 2 6 12 20 20 140 8 %e A213998 . 8: 1 15 73 533 743 341 481 761 1, 1 2 3 12 15 10 35 280 9. %t A213998 T[_, 0] = 1; T[n_, n_] := 1/(n + 1); %t A213998 T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1]; %t A213998 Table[T[n, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 10 2021 *) %o A213998 (Haskell) %o A213998 import Data.Ratio ((%), numerator, denominator, Ratio) %o A213998 a213998 n k = a213998_tabl !! n !! k %o A213998 a213998_row n = a213998_tabl !! n %o A213998 a213998_tabl = map (map numerator) $ iterate pf [1] where %o A213998 pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))]) %o A213998 where x = denominator $ last row %Y A213998 Cf. A005408, A188386 (columns). %Y A213998 Cf. A001008, A027612, A124837 (diagonals). %Y A213998 Cf. A213999 (denominators). %K A213998 nonn,frac,tabl,look %O A213998 0,5 %A A213998 _Reinhard Zumkeller_, Jul 03 2012