This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214011 #15 Jun 24 2023 18:08:10 %S A214011 2,3,12,4,54,271,5,160,7722,24950,6,375,85639,9318805,9800058,7,756, %T A214011 564041,641631566,98721672541,16942485560,8,1372,2663506,17609835599, %U A214011 69768979161580,9463992096711104,131898088386405,9,2304,9976732 %N A214011 T(n,k) is the number of n X n nonnegative integer matrices with row and column i=1..n having sum <= i*k. %C A214011 Table starts %C A214011 2, 3, 4, 5, 6; %C A214011 12, 54, 160, 375, 756; %C A214011 271, 7722, 85639, 564041, 2663506; %C A214011 24950, 9318805, 641631566, 17609835599, 269462676001; %C A214011 9800058, 98721672541, 69768979161580, 11798463876314995, 807203255071567008. %C A214011 From _Robert Israel_, Jul 01 2020: (Start) %C A214011 T(n,k) is the number of integer lattice points in kP where P is an (n^2)-dimensional polytope with vertices having integer coordinates. Therefore row n is an Ehrhart polynomial in k, with degree n^2 and rational coefficients. (End) %H A214011 R. H. Hardin, <a href="/A214011/b214011.txt">Table of n, a(n) for n = 1..41</a> %F A214011 Empirical: rows 1 2 3 are polynomials of degree 1 4 9. %e A214011 Some solutions for n=3, k=1: %e A214011 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 %e A214011 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 2 %e A214011 0 0 1 0 0 1 1 2 0 0 0 0 0 1 1 0 0 2 0 0 0 %Y A214011 Row 2 is A019582(n+2). Rows 3 to 5: A214012, A214013, A214014. %K A214011 nonn,tabl %O A214011 1,1 %A A214011 _R. H. Hardin_, Jun 30 2012