This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214021 #48 Jan 22 2020 21:02:35 %S A214021 1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,0,1,2,1,1,1,0,1,6,6,1,1,1,0,1,22,72, %T A214021 18,1,1,1,0,1,92,1289,960,57,1,1,1,0,1,422,29889,93964,14257,186,1,1, %U A214021 1,0,1,2074,831174,13652068,8203915,228738,622,1,1 %N A214021 Number A(n,k) of n X k nonconsecutive tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A214021 A standard Young tableau (SYT) where entries i and i+1 never appear in the same row is called a nonconsecutive tableau. %H A214021 Alois P. Heinz, <a href="/A214021/b214021.txt">Antidiagonals n = 0..23, flattened</a> %H A214021 T. Y. Chow, H. Eriksson and C. K. Fan, <a href="https://doi.org/10.37236/1895">Chess tableaux</a>, Elect. J. Combin., 11 (2) (2005), #A3. %H A214021 S. Dulucq and O. Guibert, <a href="https://doi.org/10.1016/S0012-365X(96)83009-3">Stack words, standard tableaux and Baxter permutations</a>, Disc. Math. 157 (1996), 91-106. %H A214021 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a> %e A214021 A(2,4) = 1: %e A214021 [1 3 5 7] %e A214021 [2 4 6 8]. %e A214021 A(4,2) = 6: %e A214021 [1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3] %e A214021 [2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4] %e A214021 [3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7] %e A214021 [4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8]. %e A214021 Square array A(n,k) begins: %e A214021 1, 1, 1, 1, 1, 1, 1, ... %e A214021 1, 1, 0, 0, 0, 0, 0, ... %e A214021 1, 1, 1, 1, 1, 1, 1, ... %e A214021 1, 1, 2, 6, 22, 92, 422, ... %e A214021 1, 1, 6, 72, 1289, 29889, 831174, ... %e A214021 1, 1, 18, 960, 93964, 13652068, 2621897048, ... %e A214021 1, 1, 57, 14257, 8203915, 8134044455, 11865331748843, ... %p A214021 b:= proc(l, t) option remember; local n, s; n, s:= nops(l), %p A214021 add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]> %p A214021 `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n)) %p A214021 end: %p A214021 A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)): %p A214021 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A214021 b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]] ] ; a[n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 09 2013, translated from Maple *) %Y A214021 Rows n=0+2, 3-4 give: A000012, A001181(k) for k>0, A214875. %Y A214021 Columns k=0+1, 2, 3 give: A000012, A000957(n+1), A214159. %Y A214021 Main diagonal gives A264103. %Y A214021 Cf. A214020, A214088. %K A214021 nonn,tabl %O A214021 0,19 %A A214021 _Alois P. Heinz_, Jul 01 2012