cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214027 The number of zeros in the fundamental Pisano period of the sequence A000129 mod n.

This page as a plain text file.
%I A214027 #19 Aug 11 2019 01:41:23
%S A214027 1,1,2,1,4,2,1,1,2,2,2,2,4,1,2,1,2,2,2,1,2,2,1,1,4,2,2,1,4,2,1,1,2,2,
%T A214027 2,2,4,2,2,1,1,2,2,2,2,1,1,1,1,2,2,1,4,2,2,1,2,2,2,2,4,1,2,1,4,2,2,2,
%U A214027 2,2,1,1,2,2,2,2,2,2,1,1,2,1,2,2,2,2,2,1
%N A214027 The number of zeros in the fundamental Pisano period of the sequence A000129 mod n.
%C A214027 This is intimately connected with A175181 and A214028, much as A001176 is intimately connected with A001175 and A001177. In fact, A175181(n)/a(n) = A214028(n). This is the same divisibility relation that holds between A001175, A001176 and A001177.
%H A214027 T. D. Noe, <a href="/A214027/b214027.txt">Table of n, a(n) for n = 1..1000</a>
%F A214027 From _Jianing Song_, Sep 12 2018: (Start)
%F A214027 For odd primes p, a(p^e) = 4 if A214028(p) is odd; 1 if A214028(p) is even but not divisible by 4; 2 if A214028(p) is divisible by 4.
%F A214027 a(n) = 2 for n == 3 (mod 8). For primes p, a(p^e) = 1 if p == 7 (mod 8), 4 if p == 5 (mod 8). Conjecture: 1/6 of the primes congruent to 1 mod 8 satisfy a(p^e) = 1, 2/3 of them satisfy a(p^e) = 2 and 1/6 of them satisfy a(p^e) = 4.
%F A214027 (End)
%t A214027 Join[{1}, Table[s = t = Mod[{0, 1}, n]; zeros = 0; While[tmp = Mod[2*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s != t, If[tmp == 0, zeros++]]; zeros, {n, 2, 100}]] (* _T. D. Noe_, Jul 09 2012 *)
%o A214027 (PARI) A000129(m) = ([2, 1; 1, 0]^m)[2, 1]
%o A214027 a(n) = my(i=1); while(A000129(i)%n!=0, i++); znorder(Mod(A000129(i+1), n)) \\ _Jianing Song_, Aug 10 2019
%Y A214027 Cf. A175181, A214028.
%Y A214027 Similar sequences: A001176, A322906.
%K A214027 nonn
%O A214027 1,3
%A A214027 _Art DuPre_, Jul 04 2012