This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214036 #25 Feb 19 2025 01:02:59 %S A214036 2,3,4,5,7,8,10,14,36,37,39,42,43,44,46,47 %N A214036 Numbers k such that floor(sqrt(1)) + floor(sqrt(2)) + floor(sqrt(3)) + ... + floor(sqrt(k)) is prime. %C A214036 The sequence is complete. Indeed, let s(n) be the sum of floor(sqrt(k)) for k from 1 to n. It is easy to verify that s(n^2+j), for 0 <= j < (n+1)^2-n^2, is equal to n(j+1) + n(4n+1)(n-1)/6, which is always divisible by n or by n/6 for n > 6. - _Giovanni Resta_, Mar 26 2014 %e A214036 2 is a term because floor(sqrt(1))+floor(sqrt(2)) = 1+1 = 2 is prime; %e A214036 14 is a term because floor(sqrt(1))+ ... +floor(sqrt(14)) = 1+1+1+2+2+2+2+2+3+3+3+3+3+3 = 31 is prime. %p A214036 A214036:=proc(q) local a,n; a:=0; %p A214036 for n from 1 to q do a:=a+floor(sqrt(n)); if isprime(a) then print(n); fi; od; end: %p A214036 A214036(10^10); %p A214036 Alternative program: %p A214036 A214036_bis:=proc(q) local a,j,n; a:=0; %p A214036 for n from 1 to q do for j from 1 to 2*n+1 do %p A214036 a:=a+n; if isprime(a) then print(n^2+j-1); fi; %p A214036 od; od; end: %p A214036 A214036_bis(10^10); %t A214036 Position[Accumulate[Table[Floor[Sqrt[n]],{n,50}]],_?PrimeQ]//Flatten (* _Harvey P. Dale_, Apr 14 2017 *) %o A214036 (PARI) %o A214036 sm = 0; for (n=1, 10^9, sm+=sqrtint(n); if (isprime(sm), print1(n,", "))); %o A214036 /* _Joerg Arndt_, Mar 07 2013 */ %Y A214036 Primes in A022554. %Y A214036 Cf. A220953. %K A214036 nonn,fini,full %O A214036 1,1 %A A214036 _Paolo P. Lava_, Mar 06 2013