A214037 Irregular array T(n,k) of the numbers of non-extendable (complete) non-self-adjacent simple paths starting at each of a minimal subset of nodes within a square lattice bounded by rectangles with nodal dimensions n and 7, n >= 2.
21, 15, 11, 10, 164, 106, 72, 64, 142, 72, 38, 28, 888, 695, 607, 602, 780, 385, 258, 270, 5600, 4795, 4453, 4412, 4829, 2792, 2285, 2556, 4650, 2036, 1712, 2248, 35971, 30709, 27591, 26574, 30070, 18037, 14507, 15318, 27638, 13744, 13851, 17846
Offset: 2
Examples
When n = 2, the number of times (NT) each node in the rectangle is the start node (SN) of a complete non-self-adjacent simple path is SN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 NT 21 15 11 10 11 15 21 21 15 11 10 11 15 21 To limit duplication, only the top left-hand corner 21 and the 15, 11 and 10 to its right are stored in the sequence, i.e. T(2,1) = 21, T(2,2) = 15, T(2,3) = 11 and T(2,4) = 10.
Links
- C. H. Gribble, Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.
- C. H. Gribble, Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.
Comments