cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214043 Count of Laurent monomials (including multiplicities), in the Symplectic Schur symmetric polynomials s(mu, n) summed over all partitions mu of n.

This page as a plain text file.
%I A214043 #48 Jan 26 2018 03:54:15
%S A214043 2,15,134,1589,20162,293580,4519916,75850054,1334978228,24987138510,
%T A214043 487322528552,9968005618302,211338028257280,4658444968474433,
%U A214043 105985325960653194,2492041019432287042,60271996071301852442,1500054086883728030496
%N A214043 Count of Laurent monomials (including multiplicities), in the Symplectic Schur symmetric polynomials s(mu, n) summed over all partitions mu of n.
%H A214043 T. Amdeberhan, <a href="http://arxiv.org/abs/1207.4045">Theorems, problems and conjectures</a>, arXiv:1207.4045 [math.RT], 2012-2015.
%e A214043 For n = 2, partition = (1, 1), the Symplectic Schur is: x_1*x_2 + x_1/x_2 + x_2/x_1 + 1/(x_1*x_2) + 1. There are five terms here. Partition (2) contributes another ten terms, including the term 1 twice. So a(2) = 5+10 = 15. [Extended by _Andrey Zabolotskiy_, Jan 24 2018]
%t A214043 s[mu_,n_] := Expand[Simplify[Det[Table[x[j]^(mu[[i]]+n-i+1) - x[j]^(-mu[[j]]-n+i-1), {i,n}, {j,n}]] / Det[Table[x[j]^(n-i+1) - x[j]^(-n+i-1), {i,n}, {j,n}]]]];
%t A214043 Table[Sum[s[PadRight[mu,n], n] /. {x[_]->1}, {mu, IntegerPartitions[n]}], {n, 5}]
%t A214043 (* _Andrey Zabolotskiy_, Jan 24 2018 *)
%K A214043 nonn
%O A214043 1,1
%A A214043 _T. Amdeberhan_, Jul 13 2012