A214073 Least m>0 such that 2^n-m and n^2-m are relatively prime.
1, 3, 1, 15, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 2, 5, 1, 5, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 2
Offset: 1
Examples
gcd(63,35) = 7, gcd(62,34) = 2, gcd(61,33) = 1, so a(6) = 3.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A071222.
Programs
-
Mathematica
b[n_] := 2^n; c[n_] := n^2; Table[m = 1; While[GCD[b[n] - m, c[n] - m] != 1, m++]; m, {n, 1, 140}]