cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A214098 Number of 0..2 colorings on an n X 6 array circular in the 6 direction with new values 0..2 introduced in row major order.

Original entry on oeis.org

11, 143, 2041, 29540, 428383, 6214031, 90142852, 1307649965, 18969332317, 275177315036, 3991840859719, 57907365947207, 840029237074372, 12185826580536341, 176772858488736613, 2564343361673578460
Offset: 1

Views

Author

R. H. Hardin, Jul 04 2012

Keywords

Comments

Column 5 of A214101.

Examples

			Some solutions for n=4:
..0..1..0..1..2..1....0..1..2..1..0..2....0..1..0..2..1..2....0..1..0..2..1..2
..1..0..1..2..0..2....1..2..0..2..1..0....1..2..1..0..2..0....2..0..1..0..2..0
..2..1..0..1..2..1....2..1..2..1..0..1....2..1..2..1..0..1....0..1..0..1..0..1
..1..0..1..2..0..2....1..2..0..2..1..0....1..0..1..0..2..0....1..0..2..0..1..2
		

Crossrefs

Cf. A214101.

Formula

Empirical: a(n) = 19*a(n-1) - 71*a(n-2) + 86*a(n-3) - 24*a(n-4).
Empirical g.f.: x*(11 - 66*x + 105*x^2 - 32*x^3) / ((1 - 2*x)*(1 - 17*x + 37*x^2 - 12*x^3)). - Colin Barker, Jul 22 2018

A214099 Number of 0..2 colorings on an n X 7 array circular in the 7 direction with new values 0..2 introduced in row major order.

Original entry on oeis.org

21, 322, 5068, 79968, 1262128, 19920544, 314412672, 4962482560, 78324558592, 1236223285248, 19511734746112, 307960380098560, 4860643963478016, 76717205414993920, 1210853880866258944, 19111320764068528128
Offset: 1

Views

Author

R. H. Hardin, Jul 04 2012

Keywords

Comments

Column 6 of A214101.

Examples

			Some solutions for n=4:
..0..1..2..0..2..0..2....0..1..2..1..2..0..1....0..1..2..1..2..1..2
..2..0..1..2..0..2..1....2..0..1..0..1..2..0....2..0..1..2..0..2..1
..0..2..0..1..2..0..2....0..2..0..1..0..1..2....1..2..0..1..2..0..2
..1..0..1..2..0..2..0....1..0..1..2..1..2..0....0..1..2..0..1..2..1
		

Crossrefs

Cf. A214101.

Formula

Empirical: a(n) = 18*a(n-1) - 36*a(n-2) + 16*a(n-3).
Empirical g.f.: 7*x*(3 - 2*x)*(1 - 2*x) / (1 - 18*x + 36*x^2 - 16*x^3). - Colin Barker, Jul 22 2018

A214100 Number of 0..2 colorings on an nX8 array circular in the 8 direction with new values 0..2 introduced in row major order.

Original entry on oeis.org

43, 1179, 37441, 1241355, 41634729, 1400634371, 47155766193, 1587939072699, 53475662148217, 1800879393466291, 60647750806896129, 2042420662520443627, 68782159093181338185, 2316362060724569945187, 78007631120858457824081
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Column 7 of A214101

Examples

			Some solutions for n=4
..0..1..2..0..1..0..1..2....0..1..2..0..1..2..1..2....0..1..2..1..0..1..2..1
..2..0..1..2..0..1..0..1....2..0..1..2..0..1..2..1....1..0..1..0..1..2..0..2
..0..1..2..0..1..0..1..2....0..1..2..0..1..0..1..2....0..1..2..1..2..1..2..1
..2..0..1..2..0..1..2..0....1..2..1..2..0..1..2..0....2..0..1..2..0..2..1..0
		

Formula

Empirical: a(n) = 54*a(n-1) -820*a(n-2) +4906*a(n-3) -11803*a(n-4) +11888*a(n-5) -4672*a(n-6) +576*a(n-7)

A214102 Number of 0..2 colorings of a 3X(n+1) array circular in the n+1 direction with new values 0..2 introduced in row major order.

Original entry on oeis.org

9, 4, 121, 180, 2041, 5068, 37441, 121588, 722009, 2720828, 14363985, 58850116, 291217929, 1250645324, 5970338241, 26327622356, 123189300217, 551369047260, 2551171130801, 11514142774628, 52942859314409, 240066004887660
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Row 3 of A214101

Examples

			Some solutions for n=4
..0..1..0..2..1....0..1..0..1..2....0..1..2..0..1....0..1..2..0..1
..1..2..1..0..2....2..0..2..0..1....2..0..1..2..0....1..2..1..2..0
..0..1..0..2..1....0..1..0..1..2....0..1..2..1..2....2..0..2..0..1
		

Formula

Empirical: a(n) = 3*a(n-1) +15*a(n-2) -33*a(n-3) -22*a(n-4) +38*a(n-5) +8*a(n-6) -8*a(n-7).
Empirical: G.f. -x*(2*x^2-1)*(8*x^3-8*x^2-23*x+9) / ( (x-1)*(2*x-1)*(1+x)*(2*x^2-5*x+1)*(2*x^2+4*x+1) ). - R. J. Mathar, Jul 04 2012

A214103 Number of 0..2 colorings of a 4X(n+1) array circular in the n+1 direction with new values 0..2 introduced in row major order.

Original entry on oeis.org

27, 8, 771, 1080, 29540, 79968, 1241355, 4807928, 54733587, 263068168, 2491174972, 13706830176, 115900489291, 694854606408, 5473717429995, 34661887488856, 261125940394148, 1712290280769888, 12540109248690731, 84080392667812248
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Row 4 of A214101

Examples

			Some solutions for n=4
..0..1..0..1..2....0..1..2..1..2....0..1..0..1..2....0..1..0..1..2
..1..2..1..2..0....1..2..0..2..0....1..2..1..2..0....1..2..1..2..0
..2..0..2..0..1....2..1..2..0..1....2..0..2..0..1....0..1..0..1..2
..0..2..0..1..2....0..2..0..1..2....1..2..0..2..0....1..0..1..2..0
		

Formula

Empirical: a(n) = 8*a(n-1) +26*a(n-2) -304*a(n-3) +304*a(n-4) +2016*a(n-5) -3991*a(n-6) -2616*a(n-7) +9702*a(n-8) -2064*a(n-9) -6120*a(n-10) +2880*a(n-11)

A214104 Number of 0..2 colorings of a 5 X (n+1) array circular in the n+1 direction with new values 0..2 introduced in row major order.

Original entry on oeis.org

81, 16, 4913, 6480, 428383, 1262128, 41634729, 190532944, 4254090231, 25595530224, 448363485787, 3231395138192, 48307812545787, 393486251977776, 5289839833178345, 46862146728089808, 586190042199419197
Offset: 1

Views

Author

R. H. Hardin, Jul 04 2012

Keywords

Comments

Row 5 of A214101.

Examples

			Some solutions for n=4:
..0..1..0..2..1....0..1..2..0..1....0..1..2..0..1....0..1..2..1..2
..2..0..2..1..0....1..2..0..1..2....1..2..1..2..0....1..2..1..2..0
..0..1..0..2..1....2..0..1..2..0....0..1..2..0..1....0..1..2..1..2
..2..0..2..1..0....0..2..0..1..2....2..0..1..2..0....1..2..0..2..0
..1..2..1..0..2....1..0..1..2..0....1..2..0..1..2....0..1..2..0..2
		

Crossrefs

Cf. A214101.

Formula

Empirical: a(n) = 15*a(n-1) +56*a(n-2) -1688*a(n-3) +4037*a(n-4) +44693*a(n-5) -203873*a(n-6) -312833*a(n-7) +2832059*a(n-8) -909541*a(n-9) -17058886*a(n-10) +18627946*a(n-11) +50511099*a(n-12) -83121717*a(n-13) -71958333*a(n-14) +176504835*a(n-15) +32625006*a(n-16) -199821666*a(n-17) +30366700*a(n-18) +122944620*a(n-19) -43577864*a(n-20) -39520072*a(n-21) +20445664*a(n-22) +5749984*a(n-23) -4391680*a(n-24) -152320*a(n-25) +420352*a(n-26) -34304*a(n-27) -14336*a(n-28) +2048*a(n-29).

A214105 Number of 0..2 colorings of a 6X(n+1) array circular in the n+1 direction with new values 0..2 introduced in row major order.

Original entry on oeis.org

243, 32, 31307, 38880, 6214031, 19920544, 1400634371, 7553900384, 333634652748, 2494628888576, 82026663625611, 764829357599840, 20608425761163112, 224394973731792512, 5262099379377937907, 64035391192104272352
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Row 6 of A214101

Examples

			Some solutions for n=4
..0..1..0..2..1....0..1..2..0..1....0..1..0..2..1....0..1..2..1..2
..2..0..2..1..0....1..0..1..2..0....2..0..2..1..0....1..2..0..2..0
..1..2..1..0..2....0..1..0..1..2....0..1..0..2..1....2..0..2..0..1
..2..0..2..1..0....1..0..1..2..0....2..0..2..1..0....1..2..1..2..0
..0..1..0..2..1....0..2..0..1..2....0..2..0..2..1....0..1..2..1..2
..1..2..1..0..2....2..1..2..0..1....1..0..1..0..2....1..2..1..2..0
		

Formula

Empirical: a(n) = 31*a(n-1) +13*a(n-2) -9267*a(n-3) +78227*a(n-4) +638291*a(n-5) -10708528*a(n-6) +6150128*a(n-7) +536501107*a(n-8) -2033164909*a(n-9) -11904211731*a(n-10) +84436380845*a(n-11) +77412169368*a(n-12) -1706545467464*a(n-13) +1811776247266*a(n-14) +19304523636130*a(n-15) -47889544867794*a(n-16) -117456145818834*a(n-17) +525235170302850*a(n-18) +213625076617474*a(n-19) -3290233046207679*a(n-20) +2089968288107233*a(n-21) +12240390785511137*a(n-22) -17809441292578591*a(n-23) -24715178090410237*a(n-24) +65443537376780099*a(n-25) +13041358597027717*a(n-26) -135368827365208891*a(n-27) +55864333777538925*a(n-28) +159221485635535469*a(n-29) -143613070053648912*a(n-30) -91023260463361328*a(n-31) +154989094709985664*a(n-32) +916845169402240*a(n-33) -84356499484710528*a(n-34) +27208165877275008*a(n-35) +20331945994935040*a(n-36) -12539801202332928*a(n-37) -634009016424448*a(n-38) +1714850626521088*a(n-39) -304729578209280*a(n-40)

A214106 Number of 0..2 colorings of a 7X(n+1) array circular in the n+1 direction with new values 0..2 introduced in row major order.

Original entry on oeis.org

729, 64, 199497, 233280, 90142852, 314412672, 47155766193, 299509642048, 26250020282379, 243253214571840, 15113287948805276, 181270756016258688, 8893813157150201001, 128314897105215920064, 5318043679617354503457
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Row 7 of A214101

Examples

			Some solutions for n=4
..0..1..2..0..1....0..1..0..2..1....0..1..2..0..1....0..1..2..0..2
..2..0..1..2..0....1..2..1..0..2....1..2..0..2..0....2..0..1..2..1
..0..1..2..1..2....2..0..2..1..0....2..1..2..0..1....0..1..2..1..2
..1..0..1..2..0....1..2..1..0..2....0..2..0..1..2....2..0..1..0..1
..2..1..2..0..1....2..0..2..1..0....1..0..1..2..0....0..2..0..1..2
..0..2..0..1..2....0..1..0..2..1....2..1..2..0..1....2..0..1..0..1
..2..1..2..0..1....1..2..1..0..2....1..0..1..2..0....0..1..2..1..2
		
Showing 1-8 of 8 results.