cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A214107 Number of 0..3 colorings on an n X 4 array circular in the 4 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

4, 111, 3502, 110985, 3517864, 111505491, 3534382642, 112029109005, 3550979773324, 112555187335671, 3567654845960182, 113083736087142225, 3584408223207742384, 113614766854701858651, 3601240272765698000122
Offset: 1

Views

Author

R. H. Hardin, Jul 04 2012

Keywords

Examples

			Some solutions for n=4:
..0..1..2..1....0..1..2..1....0..1..2..1....0..1..2..1....0..1..0..1
..2..0..1..3....1..2..1..2....1..0..1..2....3..0..3..2....1..0..1..0
..1..3..0..2....0..3..0..3....2..3..2..0....0..1..0..3....0..1..2..3
..2..0..2..3....1..0..2..0....0..1..0..1....3..2..1..2....3..0..3..1
		

Crossrefs

Column 3 of A214112.

Formula

Empirical: a(n) = 35*a(n-1) -107*a(n-2) +73*a(n-3).
Empirical g.f.: -x*(5*x-1)*(9*x-4) / ( (x-1)*(73*x^2-34*x+1) ). - R. J. Mathar, Jul 04 2012

A214108 Number of 0..3 colorings on an nX5 array circular in the 5 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

10, 670, 44900, 3008980, 201647240, 13513419640, 905603817680, 60689173906000, 4067093973641120, 272556904729800160, 18265441319366096960, 1224061254004727782720, 82030646145243326825600
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Column 4 of A214112

Examples

			Some solutions for n=4
..0..1..2..3..1....0..1..0..1..2....0..1..0..1..2....0..1..0..2..3
..3..2..0..1..2....1..0..1..0..3....2..3..1..2..0....1..2..1..3..0
..1..3..1..2..0....2..1..3..2..1....1..0..2..0..2....3..1..3..1..2
..0..1..0..3..1....3..0..1..0..2....2..1..3..1..0....0..3..1..2..1
		

Formula

Empirical: a(n) = 68*a(n-1) -66*a(n-2).
Empirical: G.f. -10*x*(-1+x) / ( 1-68*x+66*x^2 ). - R. J. Mathar, Jul 04 2012

A214109 Number of 0..3 colorings on an nX6 array circular in the 6 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

31, 4994, 825105, 136579852, 22615881851, 3745149506514, 620197951750765, 102705230544465812, 17008068694073067351, 2816550096827130042274, 466423009554657364966505, 77240033763830053132251132
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Column 5 of A214112

Examples

			Some solutions for n=4
..0..1..2..0..1..3....0..1..0..1..2..3....0..1..0..1..2..1....0..1..0..1..0..1
..1..0..1..2..3..0....2..0..1..2..1..0....1..3..2..3..1..3....2..3..1..0..2..3
..3..1..2..0..1..2....1..2..3..1..3..2....2..0..1..2..3..0....0..1..0..2..3..1
..1..2..3..1..0..3....2..3..0..2..0..1....0..1..0..3..0..1....1..3..1..0..1..0
		

Formula

Empirical: a(n) = 200*a(n-1) -5769*a(n-2) +11744*a(n-3) +43057*a(n-4) -89856*a(n-5) +40625*a(n-6).
Empirical: G.f. -x*(31-1206*x+5144*x^2+5174*x^3-42107*x^4+28260*x^5) / ( (x-1)*(40625*x^5-49231*x^4-6174*x^3+5570*x^2-199*x+1) ). - R. J. Mathar, Jul 04 2012

A214110 Number of 0..3 colorings on an nX7 array circular in the 7 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

91, 34041, 12777541, 4797577911, 1801391900581, 676387200779521, 253970131976197721, 95360806682222518731, 35806113871482016834611, 13444493973598029022988181, 5048143980581518949006312711
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Column 6 of A214112

Examples

			Some solutions for n=4
..0..1..2..3..0..1..3....0..1..0..1..0..1..2....0..1..2..1..0..3..1
..3..0..1..0..1..3..0....1..3..2..3..1..2..3....3..0..3..2..1..0..2
..2..1..2..3..0..1..3....2..0..1..0..2..3..1....0..1..0..1..0..2..1
..1..2..0..1..2..3..0....0..3..0..3..0..1..3....1..0..2..0..1..3..2
		

Formula

Empirical: a(n) = 416*a(n-1) -15454*a(n-2) +89758*a(n-3) +90848*a(n-4) -438718*a(n-5) +62801*a(n-6)

A214111 Number of 0..3 colorings on an n X 8 array circular in the 8 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

274, 241021, 214404272, 191154162535, 170522196557894, 152139337430979981, 135743316919977662412, 121115464757399493650995, 108064195911838596360133794, 96419379334610535129230711641
Offset: 1

Views

Author

R. H. Hardin, Jul 04 2012

Keywords

Comments

Column 7 of A214112.

Examples

			Some solutions for n=4
..0..1..2..0..2..3..0..1....0..1..0..1..2..1..2..3....0..1..2..1..2..1..0..3
..1..2..3..2..0..1..2..3....3..2..1..0..3..2..0..1....2..3..0..2..0..2..1..0
..0..1..0..3..1..2..3..1....0..3..2..1..2..3..1..2....3..0..1..0..2..0..2..1
..1..0..1..2..3..0..1..2....2..0..3..2..3..1..2..1....1..3..0..1..3..1..3..2
		

Crossrefs

Cf. A214112.

Formula

Empirical: a(n) = 1203*a(n-1) -297573*a(n-2) +18493097*a(n-3) -335304937*a(n-4) -2841739689*a(n-5) +143852359466*a(n-6) -1534038361818*a(n-7) +6617547976377*a(n-8) -7661483975363*a(n-9) -26503966569309*a(n-10) +78166619202873*a(n-11) -32671121962535*a(n-12) -67703780939087*a(n-13) +56706284940528*a(n-14) -5556753823232*a(n-15).

A214113 Number of 0..3 colorings of a 2X(n+1) array circular in the n+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

4, 11, 111, 670, 4994, 34041, 241021, 1678940, 11777184, 82366471, 576786731, 4036842810, 28259892574, 197813269301, 1384710821241, 9692921940280, 67850615007164, 474953820774531, 3324678198248551, 23272743029259350
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Row 2 of A214112

Examples

			Some solutions for n=4
..0..1..0..2..3....0..1..2..0..1....0..1..2..3..1....0..1..2..0..3
..1..2..1..3..0....1..2..3..1..0....3..2..0..1..2....3..0..1..2..0
		

Formula

Empirical: a(n) = 4*a(n-1) +22*a(n-2) -4*a(n-3) -21*a(n-4).
Empirical: G.f. -x*(7*x+4)*(3*x-1) / ( (x-1)*(3*x+1)*(7*x-1)*(1+x) ), a(n) = 11/24 +3*(-1)^(n+1)/8 +7^(n+1)/24 +(-3)^(n+1)/8. - R. J. Mathar, Jul 04 2012

A214114 Number of 0..3 colorings of a 3X(n+1) array circular in the n+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

25, 121, 3502, 44900, 825105, 12777541, 214404272, 3462096250, 56936675435, 928191589611, 15195150205442, 248255790803800, 4059868440913765, 66362714338128081, 1085006507030505012, 17737586664000998550, 289987159511252164095, 4740808786041449060951
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Row 3 of A214112.

Examples

			Some solutions for n=4
..0..1..2..3..1....0..1..0..2..1....0..1..2..0..1....0..1..0..1..2
..1..0..3..0..3....1..0..2..0..2....1..2..3..1..0....1..0..1..0..3
..0..1..2..1..2....2..1..3..1..0....3..1..0..2..1....2..1..3..1..0
		

Formula

Empirical: a(n) = 11*a(n-1) +123*a(n-2) -509*a(n-3) -1615*a(n-4) +7137*a(n-5) -19*a(n-6) -20571*a(n-7) +13176*a(n-8) +13932*a(n-9) -11664*a(n-10).
Empirical g.f.: -x*(-25 +154*x +904*x^2 -4220*x^3 -2423*x^4 +21806*x^5 -10134*x^6 -26460*x^7 +20898*x^8) / ( (x-1) *(3*x-1) *(2*x-1) *(4*x+1) *(1+x) *(27*x^2-18*x+1) *(18*x^3+x^2-8*x-1) ). - R. J. Mathar, Jul 04 2012

A214115 Number of 0..3 colorings of a 4X(n+1) array circular in the n+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

172, 1331, 110985, 3008980, 136579852, 4797577911, 191154162535, 7146408189140, 275880367771522, 10477887715882961, 401257797241430275, 15301725709872289480, 584778458159088101962, 22323683135830513164011
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Row 4 of A214112

Examples

			Some solutions for n=4
..0..1..0..1..2....0..1..0..1..2....0..1..2..0..3....0..1..2..0..1
..2..3..1..2..0....1..3..1..2..3....3..0..1..2..0....1..2..3..1..0
..1..0..2..0..2....0..2..0..1..2....0..2..3..1..2....3..1..2..3..2
..2..1..3..1..0....3..0..2..3..0....2..0..1..0..1....1..2..1..0..3
		

Formula

Empirical: a(n) = 26*a(n-1) +793*a(n-2) -10672*a(n-3) -111685*a(n-4) +1555742*a(n-5) +3279675*a(n-6) -80896036*a(n-7) +42501359*a(n-8) +1864752866*a(n-9) -2747661047*a(n-10) -22752052704*a(n-11) +41970382902*a(n-12) +159827903260*a(n-13) -310989873234*a(n-14) -665904810616*a(n-15) +1268829519909*a(n-16) +1620764697790*a(n-17) -2947553967077*a(n-18) -2132419325552*a(n-19) +3856072745271*a(n-20) +1195236104310*a(n-21) -2617797795489*a(n-22) +77268263580*a(n-23) +689877538245*a(n-24) -233806181994*a(n-25) +22293440379*a(n-26)

A214116 Number of 0..3 colorings of a 5 X (n+1) array circular in the n+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

1201, 14641, 3517864, 201647240, 22615881851, 1801391900581, 170522196557894, 14753755568811250, 1337556329843925041, 118318482946621914451, 10602440137851768515514, 943609314229926493605690, 84284576967431901562653281, 7514015749776922008305857141
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Examples

			Some solutions for n=4
..0..1..0..1..2....0..1..0..1..2....0..1..0..1..2....0..1..2..3..1
..3..0..1..2..1....1..2..3..2..3....2..3..1..2..3....2..0..3..0..3
..0..2..3..0..2....0..1..2..0..2....3..2..3..0..2....0..3..1..2..1
..1..3..1..2..3....2..0..1..3..0....0..1..2..3..1....1..2..0..1..0
..2..0..2..1..0....0..1..0..1..2....1..2..1..0..2....3..0..2..3..2
		

Crossrefs

Row 5 of A214112.

Formula

Empirical: a(n) = 71*a(n-1) +4557*a(n-2) -247959*a(n-3) -4551298*a(n-4) +312211770*a(n-5) +404993418*a(n-6) -170644518982*a(n-7) +1011258862697*a(n-8) +47731033893697*a(n-9) -481540382746711*a(n-10) -7812458281820015*a(n-11) +107491906115030390*a(n-12) +802753007058417122*a(n-13) -14810322992470367124*a(n-14) -52236876889837881496*a(n-15) +1397120077279486078615*a(n-16) +1908986261052682159583*a(n-17) -95326198593752797686717*a(n-18) -3939861808195761858197*a(n-19) +4862749195076427458653767*a(n-20) -4071116387231959584498297*a(n-21) -189410660185387312059455961*a(n-22) +276751300139886549419551623*a(n-23) +5709941572760196543615946145*a(n-24) -11070443342922200412503979839*a(n-25) -134291090280027322651457599227*a(n-26) +314181481729160862963244133469*a(n-27) +2472757577925653677337747724563*a(n-28) -6713232034051500539616196749221*a(n-29) -35614406256264651827834428473165*a(n-30) +110856577844537236798181863128323*a(n-31) +398621665208146683002583281790033*a(n-32) -1432552221061870350444820655406207*a(n-33) -3414719396999527654937878311873639*a(n-34) +14563763095526008410667920940827801*a(n-35) +21654501267142196378538798608022287*a(n-36) -116543432464823509218907385960284441*a(n-37) -93387410055594400458879292789356245*a(n-38) +731733590372689863579582844546687571*a(n-39) +190706789694290072743433792280938333*a(n-40) -3579797875309741007067106309019939539*a(n-41) +652579225153115526718958496831589445*a(n-42) +13489700279813336092640540284315488629*a(n-43) -7638498253467065416778042677179230491*a(n-44) -38433912247715668494850645168214247371*a(n-45) +35819158000866319233368148395018739189*a(n-46) +80188028693131094881359778731182969589*a(n-47) -107580529452211504669487846026262824276*a(n-48) -114866501279133396640685423276212942652*a(n-49) +223714163784484601383232783195358720298*a(n-50) +93941638123763694266017160455985297430*a(n-51) -325326526112916402563801402948261946309*a(n-52) -532228298120121215630201556615285321*a(n-53) +323654806138241644213915956264754074399*a(n-54) -98911187941519287004491874078986333825*a(n-55) -208650038297994885720881349543599941158*a(n-56) +120139963080822097025353464665305160370*a(n-57) +77681072075087563163939780752638812706*a(n-58) -71414419501229415220941864940025375526*a(n-59) -11807179281698032110454867882522184913*a(n-60) +23047575469053791633723741732881145451*a(n-61) -1182532109139448925007426520413002643*a(n-62) -4091815469900446098577191936781557399*a(n-63) +623145104760982496786692984844093376*a(n-64) +419771823301857020283713515806825768*a(n-65) -80021729303970260712985572597411300*a(n-66) -26221320623988171486898417129154076*a(n-67) +4579378640451562067183280930269760*a(n-68) +999536806719864877222001964255696*a(n-69) -102983262945499559324625095692800*a(n-70) -18888652384396355454046130073600*a(n-71)

A214117 Number of 0..3 colorings of a 6X(n+1) array circular in the n+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

8404, 161051, 111505491, 13513419640, 3745149506514, 676387200779521, 152139337430979981, 30459812255259919550, 6486022544560677853794, 1336162570466427358704511, 280197252137492154954816501
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Row 6 of A214112

Examples

			Some solutions for n=4
..0..1..0..1..2....0..1..0..1..2....0..1..2..3..2....0..1..2..3..2
..1..3..1..3..0....3..2..1..2..0....3..0..3..0..1....1..2..1..0..3
..2..0..2..0..1....1..3..2..0..2....0..3..0..3..2....2..3..0..1..0
..3..1..3..2..0....2..0..3..1..3....1..0..1..0..3....3..1..3..2..1
..0..2..1..3..2....0..2..0..2..1....2..1..3..2..1....1..0..2..0..2
..1..3..0..1..3....1..0..1..0..2....3..0..1..0..2....2..1..3..1..0
		
Showing 1-10 of 11 results. Next