This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214128 #31 Nov 27 2019 02:57:35 %S A214128 0,0,0,0,1,0,1,0,0,6,5,0,1,8,6,0,1,0,1,16,15,16,2,0,6,14,0,8,23,6,1,0, %T A214128 27,18,1,0,1,20,27,16,18,36,1,16,36,2,37,0,43,6,18,40,44,0,16,8,39,52, %U A214128 5,36,9,32,36,0,1,60,14,52,48,36,6,0,1,38,6,20,71 %N A214128 a(n) = 6^(6^6) mod n. %C A214128 The indices of zeros in this sequence, i.e., divisors of 6^(6^6), are all numbers of the form 2^i * 3^j, with 0 <= i, j <= 6^6. [Edited by _M. F. Hasler_, Feb 25 2018] %C A214128 If c and N are any positive integers, and p^k is the largest prime power divisor of c, then the divisors of c^N less than p^(k*N+1) are precisely those numbers in that range whose prime factorization includes only primes that divide c. This is the case c = 6, N = 6^6, so p^k = 2^1 = 2; so the first difference in the divisor list from A003586 is for A003586(n) = 2^(6^6+1). _Franklin T. Adams-Watters_, Jul 12 2012 %C A214128 Eventually constant: see formula. - _M. F. Hasler_, Feb 24 2018 %C A214128 If n > 1 is coprime to 6 and A000010(n) divides 6^6 then a(n)=1. - _Robert Israel_, Nov 27 2019 %H A214128 Robert Israel, <a href="/A214128/b214128.txt">Table of n, a(n) for n = 1..10000</a> %H A214128 <a href="/index/Con#constant">Index entries for eventually constant sequences</a>. %F A214128 a(n) = 0 if and only if n = 2^i 3^j, 0 <= i, j <= 6^6; after the last of these zeros at n = 6^6^6, a(n) = 6^6^6 for all n > 6^6^6 ~ 2.659*10^36305. - _M. F. Hasler_, Feb 24 2018 %e A214128 a(1) = 6^(6^6) mod 1 = 0. %e A214128 a(2) = 6^(6^6) mod 2 = 0. %e A214128 a(3) = 6^(6^6) mod 3 = 0. %e A214128 a(4) = 6^(6^6) mod 4 = 0. %p A214128 seq(6 &^ (6^6) mod n, n=1..100); # _Robert Israel_, Nov 27 2019 %t A214128 Table[PowerMod[6, 6^6, n], {n, 100}] %o A214128 (PARI) a(n)=lift(Mod(6,n)^6^6) \\ _Charles R Greathouse IV_, Jul 05 2012 %Y A214128 Cf. A129810 (9^9^9 mod n), A003586. %K A214128 nonn %O A214128 1,10 %A A214128 _Marvin Ray Burns_, Jul 04 2012