This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214176 #25 Jan 31 2025 17:36:52 %S A214176 44,58,72,62,96,82,120,94,104,152,120,130,184,146,144,164,224,180,176, %T A214176 198,264,214,208,216,240,312,256,248,256,282,360,298,288,296,304,332, %U A214176 416,348,336,344,352,382,472,398,384,392,400,408,440,536,456,440 %N A214176 Sum of the 8 nearest neighbors of n in a spiral with positive integers. %H A214176 Rémy Sigrist, <a href="/A214176/b214176.txt">Table of n, a(n) for n = 1..5202</a> %H A214176 Rémy Sigrist, <a href="/A214176/a214176.gp.txt">PARI program for A214176</a> %e A214176 Spiral begins: %e A214176 . %e A214176 49 26--27--28--29--30--31 %e A214176 | | | %e A214176 48 25 10--11--12--13 32 %e A214176 | | | | | %e A214176 47 24 9 2---3 14 33 %e A214176 | | | | | | | %e A214176 46 23 8 1 4 15 34 %e A214176 | | | | | | %e A214176 45 22 7---6---5 16 35 %e A214176 | | | | %e A214176 44 21--20--19--18--17 36 %e A214176 | | %e A214176 43--42--41--40--39--38--37 %e A214176 . %e A214176 The 8 nearest neighbors of 2 are 1,3,4,8,9,10,11,12. Their sum is a(2)=58. %t A214176 step=15; (f=Join[{12,18,24,6,32,10,40,6},Flatten@Table[{Table[0,k], s=10+2i,56+8i,s},{k,0,step},{i,2k-1,2k}]])+8Range@Length@f+24 (* _Giorgos Kalogeropoulos_, Sep 23 2023 *) %o A214176 (Python) %o A214176 SIZE=11 # must be odd %o A214176 grid = [0] * (SIZE*SIZE) %o A214176 posX = posY = SIZE//2 %o A214176 grid[posY*SIZE+posX]=1 %o A214176 n = 2 %o A214176 saveX = [0]* (SIZE*SIZE+1) %o A214176 saveY = [0]* (SIZE*SIZE+1) %o A214176 saveX[1]=posX %o A214176 saveY[1]=posY %o A214176 def walk(stepX,stepY,chkX,chkY): %o A214176 global posX, posY, n %o A214176 while 1: %o A214176 posX+=stepX %o A214176 posY+=stepY %o A214176 grid[posY*SIZE+posX]=n %o A214176 saveX[n]=posX %o A214176 saveY[n]=posY %o A214176 n+=1 %o A214176 if posX+posY==0 or grid[(posY+chkY)*SIZE+posX+chkX]==0: %o A214176 return %o A214176 while 1: %o A214176 walk(0,-1, 1, 0) # up %o A214176 if posX+posY==0: %o A214176 break %o A214176 walk(1, 0, 0, 1) # right %o A214176 walk(0, 1,-1, 0) # down %o A214176 walk(-1,0, 0,-1) # left %o A214176 for n in range(1,(SIZE-2)*(SIZE-2)+1): %o A214176 posX = saveX[n] %o A214176 posY = saveY[n] %o A214176 k = grid[(posY-1)*SIZE+posX] + grid[(posY+1)*SIZE+posX] %o A214176 k+= grid[(posY-1)*SIZE+posX-1] + grid[(posY-1)*SIZE+posX+1] %o A214176 k+= grid[(posY+1)*SIZE+posX-1] + grid[(posY+1)*SIZE+posX+1] %o A214176 print(k+grid[posY*SIZE+posX-1] + grid[posY*SIZE+posX+1], end=', ') %o A214176 (PARI) \\ See Links section. %Y A214176 Cf. A002061, A114254, A137928, A137930, A137931. %Y A214176 Cf. A214177 (sum of the 4 nearest neighbors). %K A214176 nonn,easy %O A214176 1,1 %A A214176 _Alex Ratushnyak_, Jul 06 2012