A214177 Sum of the 4 nearest neighbors of n in a spiral with positive integers.
20, 24, 32, 24, 44, 32, 56, 40, 44, 72, 52, 56, 88, 64, 68, 72, 108, 80, 84, 88, 128, 96, 100, 104, 108, 152, 116, 120, 124, 128, 176, 136, 140, 144, 148, 152, 204, 160, 164, 168, 172, 176, 232, 184, 188, 192, 196, 200, 204, 264, 212, 216, 220, 224, 228, 232, 296
Offset: 1
Examples
Spiral begins: . 49 26--27--28--29--30--31 | | | 48 25 10--11--12--13 32 | | | | | 47 24 9 2---3 14 33 | | | | | | | 46 23 8 1 4 15 34 | | | | | | 45 22 7---6---5 16 35 | | | | 44 21--20--19--18--17 36 | | 43--42--41--40--39--38--37 . The four nearest neighbors of 2 are 1, 3, 9, 11. Their sum is a(2) = 24.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..5202
- Rémy Sigrist, PARI program for A214177
Crossrefs
Programs
-
PARI
See Links section.
Formula
For n >= 3, a(n+1) - a(n) = 4 except if n = k^2/4 + 3*k/2 + (17 - (-1)^k)/8 for some k >= 1 then a(n+1) - a(n) = 4*k + 16 and if n = k^2/4 + 3*k/2 + (25 - (-1)^k)/8 for some k >= 0 then a(n+1) - a(n) = -4*k - 8. - Robert Israel, Dec 14 2023
Comments