cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214196 Unique terms in sequence A210144.

Original entry on oeis.org

2, 3, 5, 11, 23, 29, 37, 41, 47, 73, 131, 151, 199, 223, 271, 281, 353, 457, 641, 643, 659, 1259, 1531, 1747, 1951, 2671, 2953, 4259, 4967, 5419, 5839, 7013, 7963, 11261, 12653, 15733, 16189, 18367, 19237, 29129, 32381, 33161, 33247, 57653, 61723, 63823, 66739
Offset: 1

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Comments

The sequence is the set of numbers m which are the minimum m for some triple 1 <= i < j <= k such that m divides none of the differences A002110(i)-A002110(j). - R. J. Mathar, Jul 08 2012
In Sun (2012), these numbers are called "Primes of the first kind".
Conjecture: all the terms are prime. See Conjecture 1.5(i) in Sun 2012. - Jason Yuen, Feb 25 2024

Crossrefs

Programs

  • Maple
    A214196 := proc(n)
            local m ,i,j,ddvs;
            for m from 2 do
                    ddvs := false ;
                    for i from 1 to n-1 do
                            for j from i+1 to n do
                                    if (A002110(j)-A002110(i)) mod m = 0 then
                                            ddvs := true;
                                            break;
                                    end if;
                            end do:
                            if ddvs then
                                    break;
                            end if;
                    end do:
                    if ddvs = false then
                            return m;
                    end if;
            end do:
    end proc:
    # loop generates m multiples times (pipe through 'uniq')
    for n from 1 do
            printf("%d,\n",A214196(n)) ;
    end do: # R. J. Mathar, Jul 08 2012
  • Mathematica
    primorial[n_] := primorial[n] = Product[Prime[i], {i, 1, n}];
    p[0] = 1; p[n_] := p[n] = Module[{m, i, j, ddvs}, For[m = 2, True, m++, ddvs = False ; For[i = 1, i <= n - 1, i++, For[j = i + 1, j <= n, j++, If[Mod[primorial[j] - primorial[i], m] == 0, ddvs = True; Break[]]]; If[ddvs, Break[]]]; If[ddvs == False, Return[m]]]];
    A214196 = Reap[n = k = 1; While[n <= 400, If[p[n] != p[n - 1], a[k] = p[n]; Print[n, " a(", k, ") = ", a[k]]; Sow[a[k]]; k++]; n++]][[2, 1]] (* Jean-François Alcover, Jan 20 2018, after R. J. Mathar *)

Extensions

a(28)-a(34) from Jean-François Alcover, Jan 20 2018
Definition simplified and more terms from Jason Yuen, Feb 24 2024