A214196 Unique terms in sequence A210144.
2, 3, 5, 11, 23, 29, 37, 41, 47, 73, 131, 151, 199, 223, 271, 281, 353, 457, 641, 643, 659, 1259, 1531, 1747, 1951, 2671, 2953, 4259, 4967, 5419, 5839, 7013, 7963, 11261, 12653, 15733, 16189, 18367, 19237, 29129, 32381, 33161, 33247, 57653, 61723, 63823, 66739
Offset: 1
Keywords
Links
- Jason Yuen, Table of n, a(n) for n = 1..128
- Zhi-Wei Sun, On functions taking only prime values, arXiv preprint arXiv:1202.6589 [math.NT], 2012; see p. 5-6.
Programs
-
Maple
A214196 := proc(n) local m ,i,j,ddvs; for m from 2 do ddvs := false ; for i from 1 to n-1 do for j from i+1 to n do if (A002110(j)-A002110(i)) mod m = 0 then ddvs := true; break; end if; end do: if ddvs then break; end if; end do: if ddvs = false then return m; end if; end do: end proc: # loop generates m multiples times (pipe through 'uniq') for n from 1 do printf("%d,\n",A214196(n)) ; end do: # R. J. Mathar, Jul 08 2012
-
Mathematica
primorial[n_] := primorial[n] = Product[Prime[i], {i, 1, n}]; p[0] = 1; p[n_] := p[n] = Module[{m, i, j, ddvs}, For[m = 2, True, m++, ddvs = False ; For[i = 1, i <= n - 1, i++, For[j = i + 1, j <= n, j++, If[Mod[primorial[j] - primorial[i], m] == 0, ddvs = True; Break[]]]; If[ddvs, Break[]]]; If[ddvs == False, Return[m]]]]; A214196 = Reap[n = k = 1; While[n <= 400, If[p[n] != p[n - 1], a[k] = p[n]; Print[n, " a(", k, ") = ", a[k]]; Sow[a[k]]; k++]; n++]][[2, 1]] (* Jean-François Alcover, Jan 20 2018, after R. J. Mathar *)
Extensions
a(28)-a(34) from Jean-François Alcover, Jan 20 2018
Definition simplified and more terms from Jason Yuen, Feb 24 2024
Comments