cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214205 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index = 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 16, 64, 240, 832, 2976, 11008, 40624, 150400, 559584, 2090112, 7832928, 29432704, 110863680, 418479104, 1582628656, 5995379456, 22746329952, 86417102720, 328720669216, 1251831214976, 4772155518656, 18209463672320, 69544295350240, 265814912973056, 1016776398337728, 3892040452165888, 14907843267549376
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*x))/2; # A000108 with a different offset
    # F-(k): gives A025266, A025271, A214200, A214203
    Fm:=k->(1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1)));
    Sm:=k->seriestolist(series(Fm(k),x,50));
    # F+(k): gives A000108, A214198, A214201, A214204
    Fp:=k->C-Fm(k-1);
    Sp:=k->seriestolist(series(Fp(k),x,50));
    # F(k): gives A025266, A214199, A214202, A214205
    F:=k->Fm(k)-Fm(k-1);
    S:=k->seriestolist(series(F(k),x,50));
  • Mathematica
    (1/2)*(Sqrt[1 - 4*x + 32*x^5] - Sqrt[1 - 4*x + 64*x^6]) + O[x]^34 // CoefficientList[#, x]& (* Jean-François Alcover, Nov 07 2016, after Maple *)