A214205 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index = 5.
0, 0, 0, 0, 0, 8, 0, 16, 64, 240, 832, 2976, 11008, 40624, 150400, 559584, 2090112, 7832928, 29432704, 110863680, 418479104, 1582628656, 5995379456, 22746329952, 86417102720, 328720669216, 1251831214976, 4772155518656, 18209463672320, 69544295350240, 265814912973056, 1016776398337728, 3892040452165888, 14907843267549376
Offset: 0
Keywords
Links
- Filippo Disanto, The size of the biggest Caterpillar subtree in binary rooted planar trees, arXiv preprint arXiv:1202.5668 [math.CO], 2012.
- Filippo Disanto, Unbalanced subtrees in binary rooted ordered and un-ordered trees, Séminaire Lotharingien de Combinatoire, 68 (2013), Article B68b.
Programs
-
Maple
C:=(1-sqrt(1-4*x))/2; # A000108 with a different offset # F-(k): gives A025266, A025271, A214200, A214203 Fm:=k->(1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1))); Sm:=k->seriestolist(series(Fm(k),x,50)); # F+(k): gives A000108, A214198, A214201, A214204 Fp:=k->C-Fm(k-1); Sp:=k->seriestolist(series(Fp(k),x,50)); # F(k): gives A025266, A214199, A214202, A214205 F:=k->Fm(k)-Fm(k-1); S:=k->seriestolist(series(F(k),x,50));
-
Mathematica
(1/2)*(Sqrt[1 - 4*x + 32*x^5] - Sqrt[1 - 4*x + 64*x^6]) + O[x]^34 // CoefficientList[#, x]& (* Jean-François Alcover, Nov 07 2016, after Maple *)