This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214229 #29 Aug 02 2019 05:27:06 %S A214229 3,5,1,9,11,13,3,17,19,3,1,25,27,29,1,33,5,37,3,1,43,9,1,1,17,53,11, %T A214229 57,59,61,9,65,67,3,1,73,3,11,1,81,83,17,3,89,13,3,19,97,99,101,1,3, %U A214229 107,109,3,113,5,9,17,121,3,125,1,129,131,19 %N A214229 a(n) equals gcd(r,2*n+1) where r is 1 + (A143608(i+1) mod (2*n+1)) where A143608(i) is the first zero mod 2n+1 other than 0. %C A214229 It appears that a(n) * b(n) either equals 2*n+1 or 1 where b is the companion sequence A214228. %e A214229 a(7) = 3 which is a factor of 2*7 + 1. %p A214229 A214229 := proc(n) %p A214229 local i,r ; %p A214229 i := 1; %p A214229 while A143608(i) mod (2*n+1) <> 0 do %p A214229 i := i+1 ; %p A214229 end do; %p A214229 r := 1+(A143608(i+1) mod (2*n+1)) ; %p A214229 gcd(r,2*n+1) ; %p A214229 end proc: # _R. J. Mathar_, Jul 22 2012 %t A214229 gcdN2[x_,y_] = GCD[y - x + 1,y]; %t A214229 r0 = 3; %t A214229 table=Reap[While[r0 < 200,s1=1;s0=0;count=1;While[True,count++;temp=Mod[4*s1 - s0,r0]; %t A214229 If[temp==0,Break[]];count++;s0 = s1; s1 = temp; %t A214229 temp=Mod[2*s1-s0,r0];If[temp == 0,Break[]];s0 = s1;s1 = temp;]; %t A214229 Sow[gcdN2[s1,r0],d]; %t A214229 r0+=2;]][[2]]; %t A214229 table %K A214229 nonn %O A214229 1,1 %A A214229 _Kenneth J Ramsey_, Jul 07 2012