cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214230 Sum of the eight nearest neighbors of n in a right triangular type-1 spiral with positive integers.

This page as a plain text file.
%I A214230 #27 Jun 06 2025 18:35:30
%S A214230 53,88,78,125,85,84,125,97,108,143,223,168,158,169,201,284,208,183,
%T A214230 179,187,210,281,226,219,227,235,261,314,430,339,311,310,318,326,346,
%U A214230 396,515,403,360,347,355,363,371,379,411,509,427,411,419,427,435,443,451,486,557
%N A214230 Sum of the eight nearest neighbors of n in a right triangular type-1 spiral with positive integers.
%C A214230 Right triangular type-1 spiral implements the sequence Up, Right-down, Left.
%C A214230 Right triangular type-2 spiral (A214251): Left, Up, Right-down.
%C A214230 Right triangular type-3 spiral (A214252): Right-down, Left, Up.
%C A214230 A140064 -- rightwards from 1: 3,14,34...
%C A214230 A064225 -- leftwards from 1: 8,24,49...
%C A214230 A117625 -- upwards from 1: 2,12,31...
%C A214230 A006137 -- downwards from 1: 6,20,43...
%C A214230 A038764 -- left-down from 1: 7,22,46...
%C A214230 A081267 -- left-up from 1: 9,26,52...
%C A214230 A081589 -- right-up from 1: 13, 61, 145...
%C A214230 9*x^2/2 - 19*x/2 + 6 -- right-down from 1: 5,18,40...
%H A214230 David Radcliffe, <a href="/A214230/b214230.txt">Table of n, a(n) for n = 1..10000</a>
%e A214230 Right triangular spiral begins:
%e A214230 56
%e A214230 55  57
%e A214230 54  29  58
%e A214230 53  28  30  59
%e A214230 52  27  11  31  60
%e A214230 51  26  10  12  32  61
%e A214230 50  25   9   2  13  33  62
%e A214230 49  24   8   1   3  14  34  63
%e A214230 48  23   7   6   5   4  15  35  64
%e A214230 47  22  21  20  19  18  17  16  36  65
%e A214230 46  45  44  43  42  41  40  39  38  37  66
%e A214230 78  77  76  75  74  73  72  71  70  69  68  67
%e A214230 The eight nearest neighbors of 3 are 1, 2, 13, 33, 14, 4, 5, 6. Their sum is a(3)=78.
%o A214230 (Python)
%o A214230 SIZE=29  # must be odd
%o A214230 grid = [0] * (SIZE*SIZE)
%o A214230 saveX = [0]* (SIZE*SIZE)
%o A214230 saveY = [0]* (SIZE*SIZE)
%o A214230 saveX[1] = saveY[1] = posX = posY = SIZE//2
%o A214230 grid[posY*SIZE+posX]=1
%o A214230 n = 2
%o A214230 def walk(stepX,stepY,chkX,chkY):
%o A214230   global posX, posY, n
%o A214230   while 1:
%o A214230     posX+=stepX
%o A214230     posY+=stepY
%o A214230     grid[posY*SIZE+posX]=n
%o A214230     saveX[n]=posX
%o A214230     saveY[n]=posY
%o A214230     n+=1
%o A214230     if posY==0 or grid[(posY+chkY)*SIZE+posX+chkX]==0:
%o A214230         return
%o A214230 while 1:
%o A214230     walk(0, -1,  1,  1)    # up
%o A214230     if posY==0:
%o A214230         break
%o A214230     walk( 1, 1, -1,  0)    # right-down
%o A214230     walk(-1, 0,  0, -1)    # left
%o A214230 for n in range(1,92):
%o A214230     posX = saveX[n]
%o A214230     posY = saveY[n]
%o A214230     k = grid[(posY-1)*SIZE+posX] + grid[(posY+1)*SIZE+posX]
%o A214230     k+= grid[(posY-1)*SIZE+posX-1] + grid[(posY-1)*SIZE+posX+1]
%o A214230     k+= grid[(posY+1)*SIZE+posX-1] + grid[(posY+1)*SIZE+posX+1]
%o A214230     k+= grid[posY*SIZE+posX-1] + grid[posY*SIZE+posX+1]
%o A214230     print(k, end=', ')
%Y A214230 Cf. A214251, A214252.
%Y A214230 Cf. A214226, A214231.
%K A214230 nonn,easy
%O A214230 1,1
%A A214230 _Alex Ratushnyak_, Jul 08 2012