This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214246 #20 Dec 31 2018 07:30:39 %S A214246 1,1,1,1,1,2,1,1,2,2,1,1,2,4,3,1,1,2,2,6,2,1,1,2,2,5,11,4,1,1,2,2,3,5, %T A214246 17,2,1,1,2,2,3,4,10,29,4,1,1,2,2,3,2,7,10,47,3,1,1,2,2,3,2,6,8,21,78, %U A214246 4,1,1,2,2,3,2,4,5,9,22,130,2 %N A214246 Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,0,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A214246 Alois P. Heinz, <a href="/A214246/b214246.txt">Antidiagonals n = 0..140, flattened</a> %e A214246 A(3,0) = 2: [3], [1,1,1]. %e A214246 A(4,1) = 6: [4], [2,2], [2,1,1], [1,2,1], [1,1,2], [1,1,1,1]. %e A214246 A(5,2) = 5: [5], [3,1,1], [1,3,1], [1,1,3], [1,1,1,1,1]. %e A214246 A(6,3) = 7: [6], [4,1,1], [3,3], [2,2,2], [1,4,1], [1,1,4], [1,1,1,1,1,1]. %e A214246 Square array A(n,k) begins: %e A214246 1, 1, 1, 1, 1, 1, 1, 1, ... %e A214246 1, 1, 1, 1, 1, 1, 1, 1, ... %e A214246 2, 2, 2, 2, 2, 2, 2, 2, ... %e A214246 2, 4, 2, 2, 2, 2, 2, 2, ... %e A214246 3, 6, 5, 3, 3, 3, 3, 3, ... %e A214246 2, 11, 5, 4, 2, 2, 2, 2, ... %e A214246 4, 17, 10, 7, 6, 4, 4, 4, ... %e A214246 2, 29, 10, 8, 5, 4, 2, 2, ... %p A214246 b:= proc(n, i, k) option remember; %p A214246 `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j, k), j={-k, 0, k}))) %p A214246 end: %p A214246 A:= (n, k)-> `if`(n=0, 1, add(b(n, j, k), j=1..n)): %p A214246 seq(seq(A(n, d-n), n=0..d), d=0..15); %t A214246 b[n_, i_, k_] := b[n, i, k] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j, k], {j, Union[{-k, 0, k}]}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, k], {j, 1, n}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *) %Y A214246 Column k=0 and main diagonal give: A000005. %Y A214246 Columns k=1, 2 give: A034297, A214253. %Y A214246 Cf. A214247, A214248, A214249, A214257, A214258, A214268, A214269. %K A214246 nonn,tabl %O A214246 0,6 %A A214246 _Alois P. Heinz_, Jul 08 2012