This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214248 #19 Dec 31 2018 07:31:57 %S A214248 1,1,1,1,1,2,1,1,2,2,1,1,2,4,3,1,1,2,4,6,2,1,1,2,4,8,11,4,1,1,2,4,8, %T A214248 14,17,2,1,1,2,4,8,16,27,29,4,1,1,2,4,8,16,30,49,47,3,1,1,2,4,8,16,32, %U A214248 59,92,78,4,1,1,2,4,8,16,32,62,113,170,130,2 %N A214248 Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A214248 Alois P. Heinz, <a href="/A214248/b214248.txt">Antidiagonals n = 0..140, flattened</a> %e A214248 A(3,0) = 2: [3], [1,1,1]. %e A214248 A(4,1) = 6: [4], [2,2], [2,1,1], [1,2,1], [1,1,2], [1,1,1,1]. %e A214248 A(5,2) = 14: [5], [3,2], [3,1,1], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,3,1], [1,2,2], [1,2,1,1], [1,1,3], [1,1,2,1], [1,1,1,2], [1,1,1,1,1]. %e A214248 Square array A(n,k) begins: %e A214248 1, 1, 1, 1, 1, 1, 1, 1, ... %e A214248 1, 1, 1, 1, 1, 1, 1, 1, ... %e A214248 2, 2, 2, 2, 2, 2, 2, 2, ... %e A214248 2, 4, 4, 4, 4, 4, 4, 4, ... %e A214248 3, 6, 8, 8, 8, 8, 8, 8, ... %e A214248 2, 11, 14, 16, 16, 16, 16, 16, ... %e A214248 4, 17, 27, 30, 32, 32, 32, 32, ... %e A214248 2, 29, 49, 59, 62, 64, 64, 64, ... %p A214248 b:= proc(n, i, k) option remember; %p A214248 `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j, k), j={$-k..k}))) %p A214248 end: %p A214248 A:= (n, k)-> `if`(n=0, 1, add(b(n, j, k), j=1..n)): %p A214248 seq(seq(A(n, d-n), n=0..d), d=0..15); %t A214248 b[n_, i_, k_] := b[n, i, k] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j, k], {j, -k, k}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, k], {j, 1, n}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *) %Y A214248 Columns k=0-2 give: A000005, A034297, A214255. %Y A214248 Main diagonal gives: A011782. %Y A214248 Cf. A214246, A214247, A214249, A214257, A214258, A214268, A214269. %K A214248 nonn,tabl %O A214248 0,6 %A A214248 _Alois P. Heinz_, Jul 08 2012