A214250 Sum of the eight nearest neighbors of n in a triangular "horizontal-first" spiral with positive integers.
56, 80, 108, 84, 132, 92, 84, 96, 128, 200, 152, 144, 236, 160, 172, 204, 284, 212, 188, 184, 192, 200, 208, 232, 280, 384, 304, 280, 280, 288, 428, 304, 312, 320, 340, 388, 500, 396, 356, 344, 352, 360, 368, 376, 384, 392, 400, 432, 496, 632, 520, 480, 472, 480
Offset: 1
Examples
Spiral begins: __ __ __ __ __ __ __ 57 __ __ __ __ __ __ 56 31 58 __ __ __ __ __ 55 30 13 32 59 __ __ __ __ 54 29 12 3 14 33 60 __ __ __ 53 28 11 2 1 4 15 34 61 __ __ 52 27 10 9 8 7 6 5 16 35 62 __ 51 26 25 24 23 22 21 20 19 18 17 36 63 50 49 48 47 46 45 44 43 42 41 40 39 38 37 64 The eight nearest neighbors of 4 are: 1, 3, 14, 33, 15, 5, 6, 7. Their sum is a(4)=84.
Crossrefs
Cf. A214226 - same sum in a triangular "horizontal-last" spiral.
Programs
-
Python
SIZE=29 # must be odd grid = [0] * (SIZE*SIZE) saveX = [0]* (SIZE*SIZE) saveY = [0]* (SIZE*SIZE) saveX[1] = saveY[1] = posX = posY = SIZE//2 grid[posY*SIZE+posX]=1 n = 2 def walk(stepX,stepY,chkX,chkY,chkX2,chkY2): global posX, posY, n while 1: posX+=stepX posY+=stepY grid[posY*SIZE+posX]=n saveX[n]=posX saveY[n]=posY n+=1 if posX==0 or grid[(posY+chkY)*SIZE+posX+chkX]+grid[(posY+chkY2)*SIZE+posX+chkX2]==0: return while 1: walk(-1, 0, 1, -1, 0, -1) # left if posX==0: break walk( 1,-1, 1, 1, 1, 1) # right+up walk( 1, 1, -1, 0, -1, 0) # right+down for n in range(1,122): posX = saveX[n] posY = saveY[n] k = grid[(posY-1)*SIZE+posX] + grid[(posY+1)*SIZE+posX] k+= grid[(posY-1)*SIZE+posX-1] + grid[(posY-1)*SIZE+posX+1] k+= grid[(posY+1)*SIZE+posX-1] + grid[(posY+1)*SIZE+posX+1] k+= grid[posY*SIZE+posX-1] + grid[posY*SIZE+posX+1] print(k, end=' ')