This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214252 #16 May 11 2025 22:58:52 %S A214252 62,88,63,89,76,102,170,127,126,152,223,159,140,139,159,221,175,171, %T A214252 179,202,249,353,274,252,254,262,279,323,430,330,293,283,291,299,307, %U A214252 336,425,352,339,347,355,363,371,403,468,608,493,453,446,454,462,470,478,504 %N A214252 Sum of the eight nearest neighbors of n in a right triangular type-3 spiral with positive integers. %C A214252 Right triangular type-1 spiral (A214230): implements the sequence Up, Right-down, Left. %C A214252 Right triangular type-2 spiral (A214251): Left, Up, Right-down. %C A214252 Right triangular type-3 spiral: Right-down, Left, Up. %e A214252 Right triangular type-3 spiral begins: %e A214252 78 %e A214252 77 46 %e A214252 76 45 47 %e A214252 75 44 22 48 %e A214252 74 43 21 23 49 %e A214252 73 42 20 7 24 50 %e A214252 72 41 19 6 8 25 51 %e A214252 71 40 18 5 1 9 26 52 %e A214252 70 39 17 4 3 2 10 27 53 %e A214252 69 38 16 15 14 13 12 11 28 54 %e A214252 68 37 36 35 34 33 32 31 30 29 55 %e A214252 67 66 65 64 63 62 61 60 59 58 57 56 %e A214252 The eight nearest neighbors of 5 are 1, 3, 4, 17, 18, 19, 6, 8. Their sum is a(5)=76. %o A214252 (Python) %o A214252 SIZE=28 # must be even %o A214252 grid = [0] * (SIZE*SIZE) %o A214252 saveX = [0]* (SIZE*SIZE) %o A214252 saveY = [0]* (SIZE*SIZE) %o A214252 saveX[1] = saveY[1] = posX = posY = SIZE//2 %o A214252 grid[posY*SIZE+posX]=1 %o A214252 n = 2 %o A214252 def walk(stepX, stepY, chkX, chkY): %o A214252 global posX, posY, n %o A214252 while 1: %o A214252 posX+=stepX %o A214252 posY+=stepY %o A214252 grid[posY*SIZE+posX]=n %o A214252 saveX[n]=posX %o A214252 saveY[n]=posY %o A214252 n+=1 %o A214252 if posY==0 or grid[(posY+chkY)*SIZE+posX+chkX]==0: %o A214252 return %o A214252 while posY!=0: %o A214252 walk( 1, 1, -1, 0) # right-down %o A214252 walk(-1, 0, 0, -1) # left %o A214252 walk(0, -1, 1, 1) # up %o A214252 for n in range(1, 92): %o A214252 posX = saveX[n] %o A214252 posY = saveY[n] %o A214252 k = grid[(posY-1)*SIZE+posX] + grid[(posY+1)*SIZE+posX] %o A214252 k+= grid[(posY-1)*SIZE+posX-1] + grid[(posY-1)*SIZE+posX+1] %o A214252 k+= grid[(posY+1)*SIZE+posX-1] + grid[(posY+1)*SIZE+posX+1] %o A214252 k+= grid[posY*SIZE+posX-1] + grid[posY*SIZE+posX+1] %o A214252 print(k, end=' ') %Y A214252 Cf. A214230. %Y A214252 Cf. A214251. %K A214252 nonn,easy %O A214252 1,1 %A A214252 _Alex Ratushnyak_, Jul 08 2012