A214314 Number triangle with entry T(n,m) giving the position of the first partition of n with m parts in the Abramowitz-Stegun (A-St) partition ordering.
1, 1, 2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 4, 6, 7, 1, 2, 5, 8, 10, 11, 1, 2, 5, 9, 12, 14, 15, 1, 2, 6, 11, 16, 19, 21, 22, 1, 2, 6, 13, 19, 24, 27, 29, 30, 1, 2, 7, 15, 24, 31, 36, 39, 41, 42, 1, 2, 7, 17, 28, 38, 45, 50, 53, 55, 56, 1, 2, 8, 20, 35, 48, 59, 66, 71, 74, 76, 77
Offset: 1
Examples
T(n,m) starts with: n\m 1 2 3 4 5 6 7 8 9 10 11 12... 1 1 2 1 2 3 1 2 3 4 1 2 4 5 5 1 2 4 6 7 6 1 2 5 8 10 11 7 1 2 5 9 12 14 15 8 1 2 6 11 16 19 21 22 9 1 2 6 13 19 24 27 29 30 10 1 2 7 15 24 31 36 39 41 42 11 1 2 7 17 28 38 45 50 53 55 56 12 1 2 8 20 35 48 59 66 71 74 76 77 ... T(6,4) = 8 because the 11=T(6,6) partitions for n=6 are, in A-St order: [6]; [1,5],[2,4],[3,3]; [1^2,4],[1,2,3],[2^3]; [1^3,3],[1^2,2^2]; [1^4,2]; [1^6] and the first partition with 4 parts, appears at position 8. This triangle is obtained as partial sum triangle from the triangle t(n,k) (see the comment section) which starts with: n\m 0 1 2 3 4 5 6 7 8 9 10 11 ... 1 1 2 1 1 3 1 1 1 4 1 1 2 1 5 1 1 2 2 1 6 1 1 3 3 2 1 7 1 1 3 4 3 2 1 8 1 1 4 5 5 3 2 1 9 1 1 4 7 6 5 3 2 1 10 1 1 5 8 9 7 5 3 2 1 11 1 1 5 10 11 10 7 5 3 2 1 12 1 1 6 12 15 13 11 7 5 3 2 1 ...
Crossrefs
Cf. A008284.
Formula
T(n,m) = sum(p(n,k),k=0..m-1) if n >= m >= 1, otherwise 0, with p(n,0) :=1 and p(n,k) = A008284(n,k) for k=1,2,...,n-1.
Comments