A214339 Let S_m = concatenation of words 2(1)_2, 2(2)_2, 2(3)_2, ..., 2(m)_2, where (i)_2 denotes the binary expansion of i; then sequence is S_1, S_2, S_3, ...
2, 1, 2, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1
Offset: 1
Keywords
Examples
We have S_1 = 2 1, S_2 = 2 1, 2 1 0, S_3 = 2 1, 2 1 0, 2 1 1, S_4 = 2 1, 2 1 0, 2 1 1, 2 1 0 0, ... so the sequence begins 2 1, 2 1 2 1 0, 2 1 2 1 0 2 1 1, 2 1 2 1 0 2 1 1 2 1 0 0, ...
Links
- Daniel Goc, Luke Schaeffer and Jeffrey Shallit, The Subword Complexity of k-Automatic Sequences is k-Synchronized, arXiv 1206.5352, Jun 28 2012. See Example 3.